imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconduc

FDPC8014AS PowerTrench[®] Power Clip 25V Asymmetric Dual N-Channel MOSFET

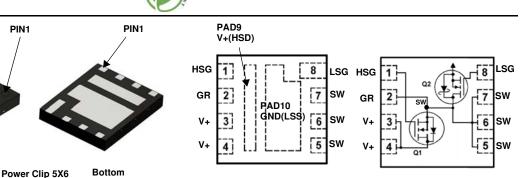
Features

Q1: N-Channel

- Max $r_{DS(on)}$ = 3.8 m Ω at V_{GS} = 10 V, I_D = 20 A
- Max $r_{DS(on)}$ = 4.7 m Ω at V_{GS} = 4.5 V, I_D = 18 A

Q2: N-Channel

- Max $r_{DS(on)} = 1.0 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 40 \text{ A}$
- Max $r_{DS(on)}$ = 1.2 m Ω at V_{GS} = 4.5 V, I_D = 37 A
- Low Inductance Packaging Shortens Rise/fall Times, Resulting in Lower Switching Losses
- MOSFET Integration Enables Optimum Layout for Lower Circuit Inductance and Reduced Switch Node Ringing
- RoHS Compliant


Тор

General Description

This device includes two specialized N-Channel MOSFETs in a dual package. The switch node has been internally connected to enable easy placement and routing of synchronous buck converters. The control MOSFET (Q1) and synchronous SyncFETTM (Q2) have been designed to provide optimal power efficiency.

Applications

- Computing
- Communications
- General Purpose Point of Load

Pin Name Description Description Description Pin Name Pin Name HSG High Side Gate 3,4,9 V+(HSD) High Side Drain 8 LSG Low Side Gate 1 2 GR Gate Return 5,6,7 SW Switching Node, Low Side Drain 10 GND(LSS) Low Side Source

MOSFET Maximum Ratings T_A = 25 °C unless otherwise noted.

Symbol	Parameter			Q1	Q2	Units
V _{DS}	Drain to Source Voltage			25 ^{Note5}	25	V
V _{GS}	Gate to Source Voltage			±12	±12	V
	Drain Current -Continuous	T _C = 25 °C	(Note 6)	59	159	
	-Continuous	T _C = 100 °C	(Note 6)	37	100	^
D	-Continuous	T _A = 25 °C		20 ^{Note1a}	40 ^{Note1b}	A
	-Pulsed		(Note 4)	266	1116	
E _{AS}	Single Pulse Avalanche Energy		(Note 3)	73	294	mJ
р	Power Dissipation for Single Operation		T _C = 25 °C	21	37	w
PD	Power Dissipation for Single Operation		T _A = 25 °C	2.1 ^{Note1a}	2.3 Note1b	vv
T _J , T _{STG}	Operating and Storage Junction Temperature Range			-55 to	+150	°C

Thermal Characteristics

$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case	6.0	3.3	
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	60 ^{Note1a}	55 ^{Note1b}	°C/W
$R_{ ext{ heta}JA}$	Thermal Resistance, Junction to Ambient	130 ^{Note1c}	120 ^{Note1d}	

December 2015

Device Marking FDPC8014AS		Device FDPC8014AS	Package Power Clip 56	Reel Size		Tape W 12 m		Quantity 3000 units		
Electrica	al Chara	cteristics T _J = 25 °C	unless otherwise note	ed.						
Symbol		Parameter	Test Con	ditions	Туре	Min.	Тур.	Max.	Units	
Off Chara	cteristics									
			I _D = 250 μA, V _{GS} =	: 0 V	Q1	25			V	
BV _{DSS}	Drain to Source Breakdown Voltage		$I_{D} = 1 \text{ mA}, V_{GS} = 0$	V	Q2	25			v	
$\frac{\Delta BV_{DSS}}{\Delta T_{.1}}$	Breakdown Coefficient	Voltage Temperature	$I_D = 250 \ \mu$ A, refere $I_D = 10 \ m$ A, reference		Q1 Q2		24 25		mV/°C	
I _{DSS}	Zero Gate	Voltage Drain Current	V _{DS} = 20 V, V _{GS} =	0 V	Q1			1	μA	
·DSS		-	$V_{DS} = 20 V, V_{GS} =$		Q2			500	μA	
I _{GSS}	Forward	urce Leakage Current,	V _{GS} = 12 V/-8 V, V V _{GS} = 12 V/-8 V, V		Q1 Q2			±100 ±100	nA nA	
On Chara	cteristics				1	1			1	
		urce Threshold Voltage	$V_{GS} = V_{DS}, I_D = 28$	50 μ Α	Q1	0.8	1.3	2.5	v	
V _{GS(th)}			$V_{GS} = V_{DS}, I_D = 1$		Q2	1.0	1.5	3.0	v	
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$		urce Threshold Voltage	$I_D = 250 \ \mu A$, refere $I_D = 10 \ mA$, reference		Q1 Q2		-4 -3		mV/°C	
			V _{GS} = 10V, I _D = 20	Α			2.9	3.8		
			V _{GS} = 4.5 V, I _D = 1 V _{GS} = 10 V, I _D = 20		Q1		3.6 3.9	4.7 5.3		
r _{DS(on)}	Drain to So	urce On Resistance	$V_{GS} = 10V, I_D = 40$				0.75	1.0	mΩ	
			$V_{GS} = 4.5 \text{ V}, I_D = 3$		Q2		0.9 1.0	1.2 1.5		
-	E a marte da Ta		$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 40 \text{ V}_{DS} = 5 \text{ V}, \text{ I}_{D} = 20 \text{ V}_{DS} = 20 \text{ V}_{DS} = 10 \text{ V}, \text{ I}_{D} = 10 \text{ V}_{DS} = 10 \text{ V}, \text{ I}_{D} = 10 \text{ V}, I$		Q1		182	1.5	0	
9fs	Forward In	ansconductance	$V_{DS} = 5 V, I_D = 40$) A	Q2		296		S	
Dynamic	Character	istics								
C _{iss}	Input Capa	citance	Q1:		Q1 Q2		1695 6985	2375 9780	pF	
	Outeut Car		V _{DS} = 13 V, V _{GS} =	0 V, f = 1 MHZ	Q2		495	710	5	
C _{oss}	Output Cap	bacitance	Q2:		Q2		2170	3040	pF	
C _{rss}	Reverse Tr	ansfer Capacitance	V_{DS} = 13 V, V_{GS} =	0 V, f = 1 MHZ	Q1 Q2		54 172	100 245	pF	
R _g	Gate Resis	tance			Q1	0.1	0.4	1.2	Ω	
"g	Gate Hesis				Q2	0.1	0.4	1.2	22	
Switching	g Characte	eristics								
t _{d(on)}	Turn-On De	elay Time			Q1 Q2		8 16	16 29	ns	
t _r	Rise Time		Q1: V _{DD} = 13 V, I _D = 20		Q1		2	10	ns	
4				$J \Lambda$, $\Pi_{\text{GEN}} = 0.32$	Q2 Q1		6 24	12 38		
t _{d(off)}	Turn-Off De	elay Time	Q2: V _{DD} = 13 V, I _D = 40	$A, R_{GEN} = 6 \Omega$	Q2		48	38 76	ns	
t _f	Fall Time			GEN	Q1 Q2		2 5	10 10	ns	
Qg	Total Gate	Charge	V _{GS} = 0 V to 10 V		Q1 Q2		25 97	35 135	nC	
Qg	Total Gate	Charge	V _{GS} = 0 V to 4.5 V	Q1 V _{DD} = 13 V, I _D	Q1		11	16	nC	
-		-		= 20 A Q2	Q2 Q1		44 3.4	62		
Q _{gs}	Gate to Sou	urce Gate Charge		$V_{DD} = 13 \text{ V}, \text{ I}_D$	Q2		14		nC	
Q _{gd}	Gate to Dra	ain "Miller" Charge		= 40 A	Q1		2.2 9		nC	
J -					Q2		Э			

Package Marking and Ordering Information

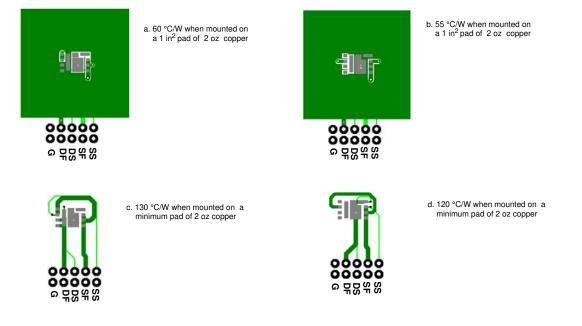
Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDPC8014AS	FDPC8014AS	Power Clip 56	13 "	12 mm	3000 units

Electrical Chara

		D 7 00			1
ΔBV_{DSS}	Breakdown Voltage Temperature	$I_D = 250 \ \mu$ A, referenced to 25 °C	Q1		
ΔT_{J}	Coefficient	I _D = 10 mA, referenced to 25 °C	Q2		l
1	Zero Gate Voltage Drain Current	V _{DS} = 20 V, V _{GS} = 0 V	Q1		
IDSS	Zero Gale Voltage Drain Gurrent	$V_{DS} = 20 V, V_{GS} = 0 V$	Q2		
1	Gate to Source Leakage Current,	V _{GS} = 12 V/-8 V, V _{DS} = 0 V	Q1		
IGSS	Forward	$V_{GS} = 12 \text{ V/-8 V}, V_{DS} = 0 \text{ V}$	Q2		l
On Char	racteristics				
Vacuus	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \ \mu A$ $V_{GS} = V_{DS}, I_D = 1 \ m A$	Q1	0.8	
V _{GS(th)}	Gate to Cource Threshold Voltage	$V_{GS} = V_{DS}, I_D = 1 \text{ mA}$	Q2	1.0	

Dynamic Characte

C _{iss}	Input Capacitance	Q1:	Q1 Q2		1695 6985	2375 9780	pF
C _{oss}	Output Capacitance	V _{DS} = 13 V, V _{GS} = 0 V, f = 1 MHZ Q2:	Q1 Q2		495 2170	710 3040	pF
C _{rss}	Reverse Transfer Capacitance	V _{DS} = 13 V, V _{GS} = 0 V, f = 1 MHZ	Q1 Q2		54 172	100 245	pF
R _g	Gate Resistance		Q1 Q2	0.1 0.1	0.4 0.4	1.2 1.2	Ω


Switching Charact

t _{d(on)}	Turn-On Delay Time			Q1 Q2	8 16	16 29	ns
t _r	Rise Time	Q1: V _{DD} = 13 V, I _D = 20) A, R _{GEN} = 6 Ω	Q1 Q2	2 6	10 12	ns
t _{d(off)}	Turn-Off Delay Time	Q2: V _{DD} = 13 V, I _D = 40	$A B_{0} = 60$	Q1 Q2	24 48	38 76	ns
t _f	Fall Time	VDD = 10 V, 10 = 40	7, HGEN – 0 32	Q1 Q2	2 5	10 10	ns
Qg	Total Gate Charge	$V_{GS} = 0 V$ to 10 V	Q1	Q1 Q2	25 97	35 135	nC
Qg	Total Gate Charge	V_{GS} = 0 V to 4.5 V		Q1 Q2	11 44	16 62	nC
Q _{gs}	Gate to Source Gate Charge		Q2 V _{DD} = 13 V, I _D	Q1 Q2	3.4 14		nC
Q _{gd}	Gate to Drain "Miller" Charge		= 40 A	Q1 Q2	2.2 9		nC

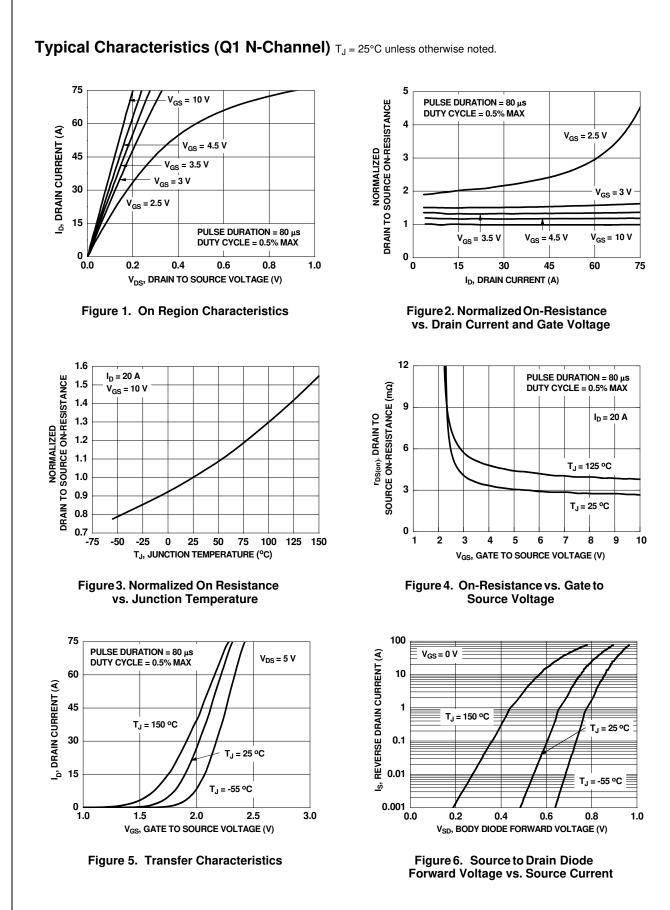
Symbol	Parameter	Test Conditions	Туре	Min.	Тур.	Max.	Units
Drain-Sou	urce Diode Characteristics						
V	Source to Drain Diode Forward Voltage	$V_{GS} = 0 V, I_S = 20 A$ (Note 2) $V_{GS} = 0 V, I_S = 40 A$ (Note 2)	Q1		0.8	1.2	V
V _{SD}	$V_{GS} = 0 \text{ V}, \text{ I}_S = 40 \text{ A}$ (Note 2)	Q2		0.8	1.2	v	
1-	Diode continuous forward current		Q1		59		А
I _S	Didde continuous forward current	$T_c = 25 \text{ °C}$	Q2		159		A
	Diede pulse ourrept	$1_{\rm C} = 25$ C	Q1		266		^
S,Pulse	Diode pulse current		Q2		1116		A
÷		Q1	Q1		25	40	
ι _{rr}	Reverse Recovery Time	$I_F = 20 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$	Q2		44	70	ns
0	Reverse Resevery Charge	Q2	Q1		10	20	
Q _{rr}	Reverse Recovery Charge	I _F = 40 A, di/dt = 300 A/µs	Q2		78	125	nC

Notes:

1. R_{0,A} is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. R_{0,JC} is guaranteed by design while R_{0CA} is determined by the user's board design.

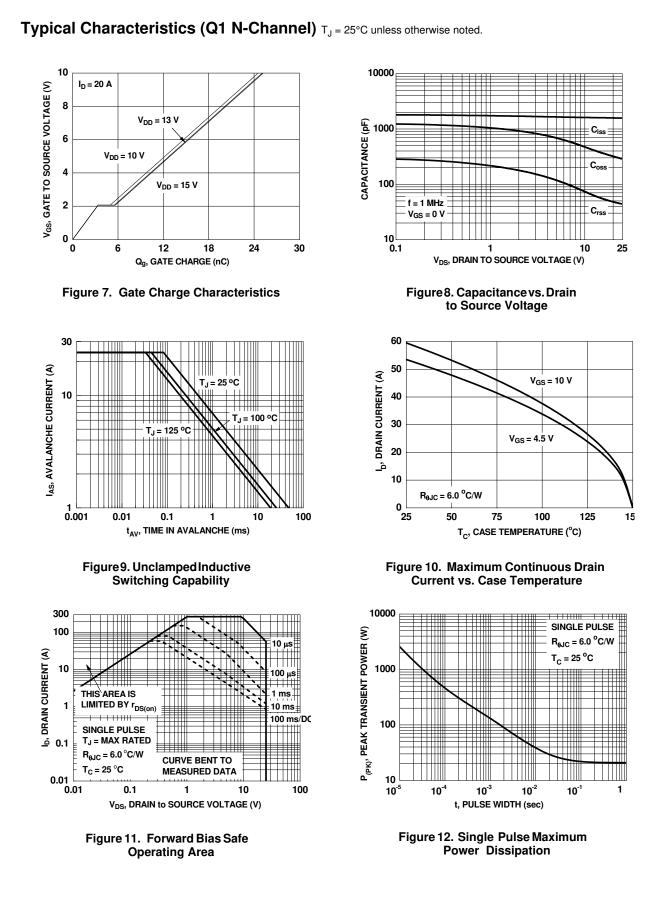
2 Pulse Test: Pulse Width < 300 $\mu s,$ Duty cycle < 2.0%.

3. Q1 : E_{AS} of 73 mJ is based on starting T_J = 25 °C; N-ch: L = 3 mH, I_{AS} = 7 A, V_{DD} = 30 V, V_{GS} = 10 V. 100% test at L= 0.1 mH, I_{AS} = 24 A.

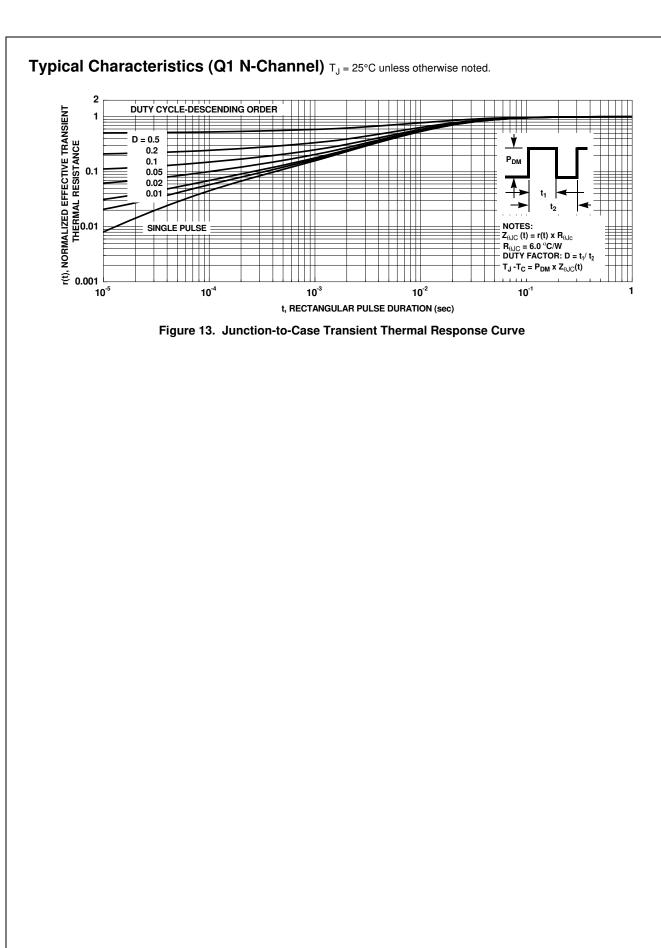

Q2: E_{AS} of 294 mJ is based on starting T_J = 25 °C; N-ch: L = 3 mH, I_{AS} = 14 A, V_{DD} = 25 V, V_{GS} = 10 V. 100% test at L= 0.1 mH, I_{AS} = 46 A.

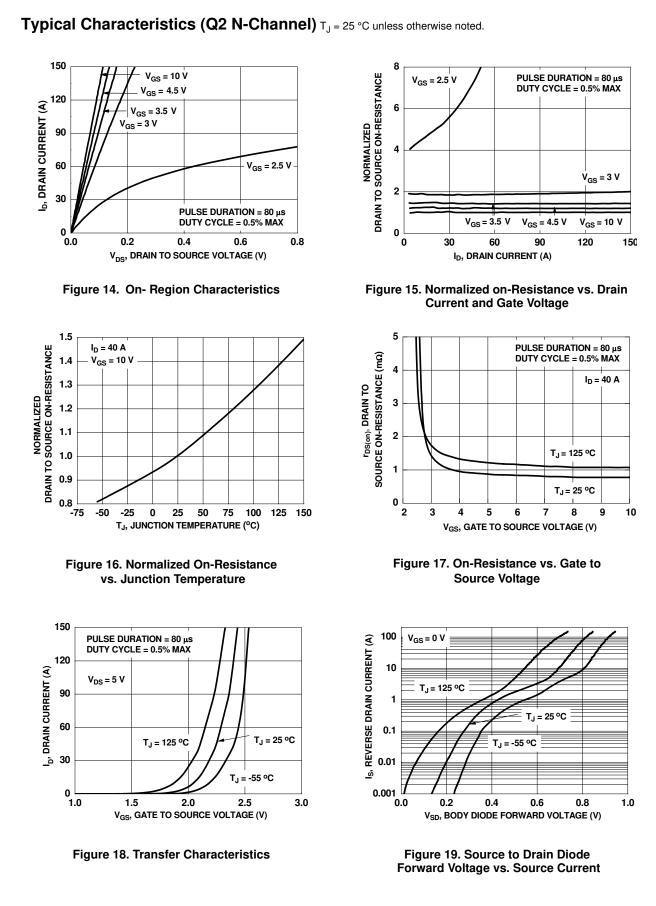
4. Pulsed Id please refer to Fig 11 and Fig 24 SOA graph for more details.

5. The continuous V_{DS} rating is 25 V; However, a pulse of 30 V peak voltage for no longer than 100 ns duration at 600 KHz frequency can be applied.

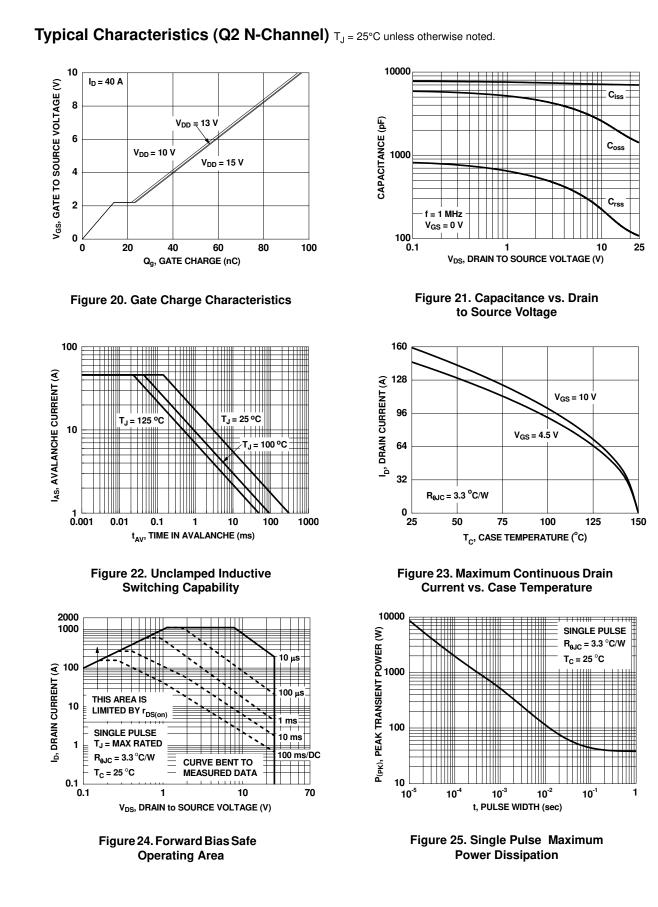

6. Computed continuous current limited to Max Junction Temperature only, actual continuous current will be limited by thermal & electro-mechanical application board design.

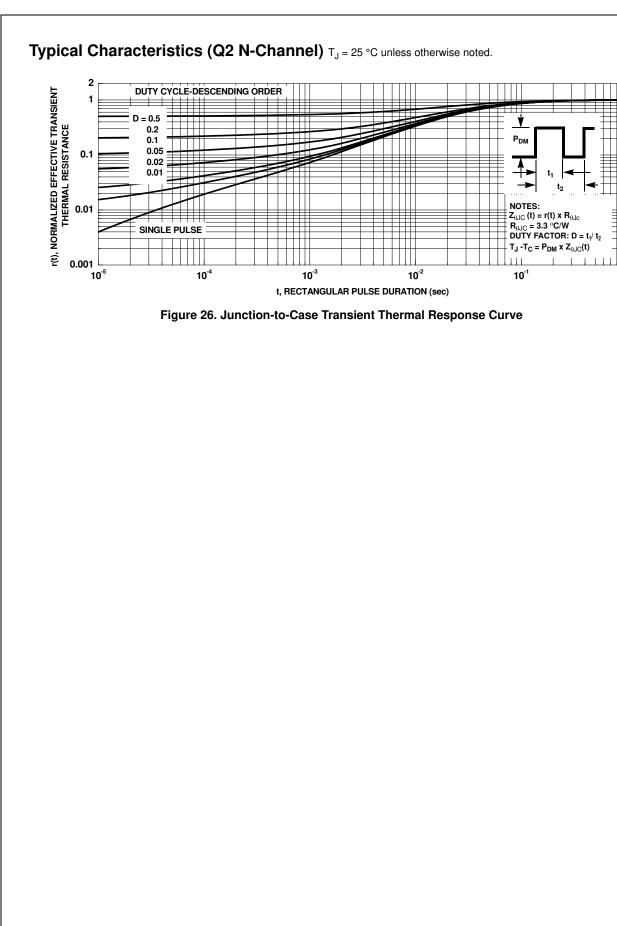
FDPC8014AS PowerTrench[®] Power Clip




©2015 Fairchild Semiconductor Corporation FDPC8014AS Rev.1.0

FDPC8014AS PowerTrench[®] Power Clip





FDPC8014AS PowerTrench[®] Power Clip

1

Typical Characteristics (continued)

SyncFET[™] Schottky body diode Characteristics

Fairchild's SyncFETTM process embeds a Schottky diode in parallel with PowerTrench[®] MOSFET. This diode exhibits similar characteristics to a discrete external Schottky diode in parallel with a MOSFET. Figure 27 shows the reverses recovery characteristic of the FDPC8014AS.

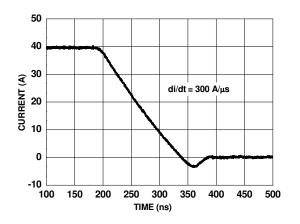


Figure 27. FDPC8014AS SyncFET[™] Body Diode Reverse Recovery Characteristic

Schottky barrier diodes exhibit significant leakage at high temperature and high reverse voltage. This will increase the power in the device.

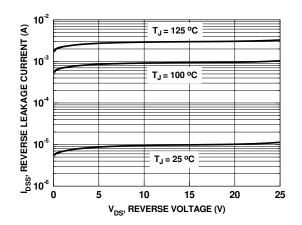
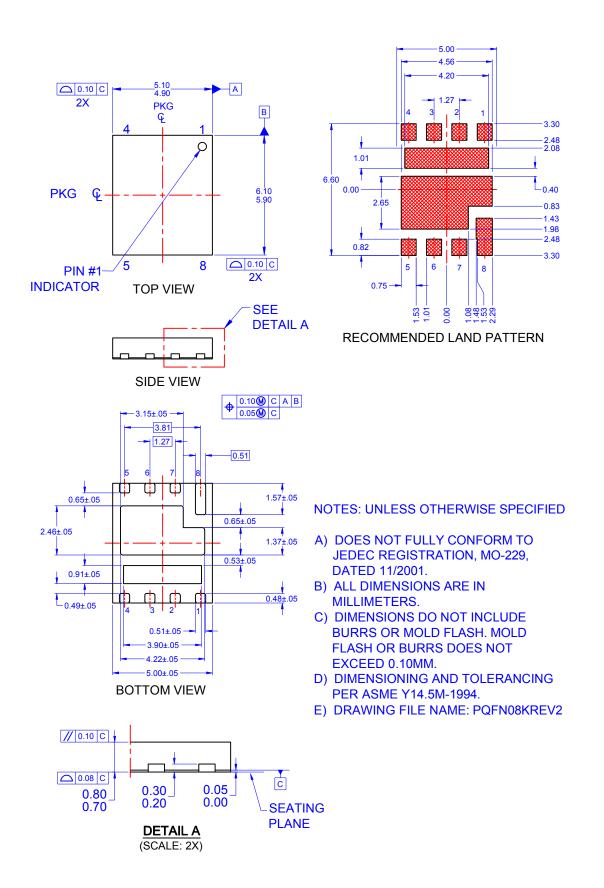



Figure 28. SyncFET[™] Body Diode Reverse Leakage vs. Drain-source Voltage

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC