

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, emplo

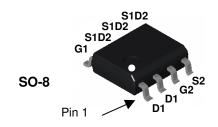
FDS6900AS

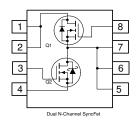
Dual N-Ch PowerTrench® SyncFET[™] General Description

The FDS6900AS is designed to replace two single SO-8 MOSFETs and Schottky diode in synchronous DC:DC power supplies that provide various peripheral voltages for notebook computers and other battery powered electronic devices. FDS6900AS contains two unique 30V, N-channel, logic level, PowerTrench MOSFETs designed to maximize power conversion efficiency.

The high-side switch (Q1) is designed with specific emphasis on reducing switching losses while the low-side switch (Q2) is optimized to reduce conduction losses. Q2 also includes an integrated Schottky diode using Fairchild's monolithic SyncFET technology.

Features


 Q2: Optimized to minimize conduction losses Includes SyncFET Schottky body diode


8.2A, 30V
$$R_{DS(on)} = 22m\Omega$$
 @ $V_{GS} = 10V$ $R_{DS(on)} = 28m\Omega$ @ $V_{GS} = 4.5V$

 Q1: Optimized for low switching losses Low Gate Charge (11nC typical)

6.9A, 30V
$$R_{DS(on)} = 27m\Omega @ V_{GS} = 10V$$

$$R_{DS(on)} = 34m\Omega @ V_{GS} = 4.5V$$

• 100% R_G (Gate Resistance) Tested

Absolute Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter		Q2	Q1	Units
V _{DSS}	Drain-Source Voltage		30	30	V
V _{GSS}	Gate-Source Voltage		±20	±20	V
I _D	Drain Current - Continuous	(Note 1a)	8.2	6.9	Α
	- Pulsed		30	20	
P _D	Power Dissipation for Dual Operation		2		W
	Power Dissipation for Single Operation	(Note 1a)	1.0	6	
		(Note 1b)	1		
		(Note 1c)	0.9	9	
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to	+150	°C

Thermal Characteristics

$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1a)	78	°C/W
$R_{ heta JC}$	Thermal Resistance, Junction-to-Case	(Note 1)	40	°C/W

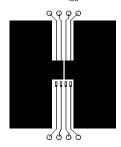
Package Marking and Ordering Information

Device Marking	Device	Reel Size	Tape width	Quantity
FDS6900AS	FDS6900AS	13"	12mm	2500 units
FDS6900AS	FDS6900AS_NL (Note 4)	13"	12mm	2500 units

Symbol	Parameter	Test Conditions	Type	Min	Тур	Max	Units
Off Cha	racteristics						
BV _{DSS}	Drain-Source Breakdown	$V_{GS} = 0 \text{ V}, \qquad I_D = 1 \text{ mA}$	Q2	30			V
	Voltage	$V_{GS} = 0 \text{ V}, \qquad I_{D} = 250 \text{ uA}$	Q1	30			
∆BV _{DSS}	Breakdown Voltage	I _D = 10 mA, Referenced to 25°C	Q2		27		mV/°C
ΔT _J	Temperature Coefficient	$I_D = 250 \mu A$, Referenced to $25^{\circ}C$ $V_{DS} = 24 \text{ V}$, $V_{GS} = 0 \text{ V}$	Q1		22	F00	•
DSS	Zero Gate Voltage Drain Current	$V_{DS} = 24 V$, $V_{GS} = 0 V$	Q2 Q1			500 1	μ A
GSS	Gate-Body Leakage	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$	Q2 Q1			±100	nA
On Cha	racteristics (Note 2)		Q I				
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 1 \text{ mA}$	Q2	1	1.9	3	V
V GS(th)	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 1 \text{ IIIA}$ $V_{DS} = V_{GS}$, $I_D = 250 \mu\text{A}$	Q1	1	1.9	3	V
$\Delta V_{GS(th)}$	Gate Threshold Voltage	I _D = 10 mA, Referenced to 25°C	Q2		-3.2		mV/°C
ΔT_J	Temperature Coefficient	I _D = 250 uA, Referenced to 25°C	Q1		-4.2		
R _{DS(on)}	Static Drain-Source	$V_{GS} = 10 \text{ V}, I_D = 8.2 \text{ A}$	Q2		17	22	mΩ
23(011)	On-Resistance	$V_{GS} = 10 \text{ V}, I_D = 8.2 \text{ A}, T_J = 125 ^{\circ}\text{C}$	~-		23	36	11132
		$V_{GS} = 4.5 \text{ V}, I_D = 7.6 \text{ A}$			21	28	
		$V_{GS} = 10 \text{ V}, \qquad I_{D} = 6.9 \text{ A}$	Q1		22	27	
		$V_{GS} = 10 \text{ V}, I_D = 6.9 \text{ A}, T_J = 125^{\circ}\text{C}$			30 27	38	
	On-State Drain Current	$V_{GS} = 4.5 \text{ V}, I_D = 6.2 \text{ A}$ $V_{GS} = 10 \text{ V}, V_{DS} = 5 \text{ V}$	00	20	21	34	Α
$I_{D(on)}$	On-State Drain Current	$V_{GS} = 10 \text{ V}, \qquad V_{DS} = 5 \text{ V}$	Q2 Q1	30 20			^
g _{FS}	Forward Transconductance	$V_{DS} = 5 \text{ V}, \qquad I_{D} = 8.2 \text{ A}$	Q2		25		S
J 10		$V_{DS} = 5 \text{ V}, \qquad I_{D} = 6.9 \text{ A}$	Q1		21		
Dynami	c Characteristics						
C _{iss}	Input Capacitance	$V_{DS} = 15 \text{ V}, \qquad V_{GS} = 0 \text{ V},$	Q2		570		рF
		f = 1.0 MHz	Q1		600		1
C_{oss}	Output Capacitance		Q2 Q1		180 150		рF
C _{rss}	Reverse Transfer Capacitance		Q2		70		pF
0155	riereree rranerer eapaonance		Q1		70		ρ.
R _G	Gate Resistance		Q2		2.8	4.9	Ω
			Q1		2.2	3.8	
Switchi	ng Characteristics (Note 2	2)					
t _{d(on)}	Turn-On Delay Time		Q2		10	19	ns
	Turn On Ding Time	4	Q1		9	18	
t _r	Turn-On Rise Time	$V_{DD} = 15 \text{ V}, I_D = 1 \text{ A},$	Q2 Q1		5 4	10 8	ns
t _{d(off)}	Turn-Off Delay Time	$V_{GS} = 10V$, $R_{GEN} = 6 \Omega$	Q2		26	42	ns
-0(011)	-	do i y den i	Q1		23	32	
t _f	Turn-Off Fall Time		Q2		3 0	6	ns
t _{d(on)}	Turn-On Delay Time		Q1 Q2		3 11	6 20	ns
•a(on)	Tam on Bolay Time		Q1		10	19	113
t _r	Turn-On Rise Time	1	Q2		15	27	ns
		$V_{DD} = 15 \text{ V}, I_{D} = 1 \text{ A},$	Q1		9	18	
$t_{d(off)}$	Turn-Off Delay Time	$V_{GS} = 4.5 \text{ V}, R_{GEN} = 6 \Omega$	Q2		16	29 25	ns
t _f	Turn-Off Fall Time	-	Q1 Q2		14 6	25 12	ns
ч	Tuni-On Fair Fillie		Q2 Q1		4	8	115

Electrical	Characteristics	, n
Electrical	Characteristics	(continued)

T_A = 25°C unless otherwise noted


Symbol	Parameter	Test Conditions	Туре	Min	Тур	Max	Units
Switching Characteristics (Note 2)							
$Q_{g(TOT)}$	Total Gate Charge at Vgs=10V	Q2: V _{DS} = 15 V, I _D = 8.2A	Q2 Q1		10 11	15 15	nC
Q_g	Total Gate Charge at Vgs=5V	Q1: V _{DS} = 15 V, I _D = 6.9A	Q2 Q1		5.8 6.1	8.2 8.5	nC
Q_{gs}	Gate-Source Charge		Q2 Q1		1.6 1.7		nC
Q_{gd}	Gate-Drain Charge		Q2 Q1		2.1 2.2		nC

Drain-Source Diode Characteristics and Maximum Ratings

Is	Maximum Continuous Drain-So	Maximum Continuous Drain-Source Diode Forward Current					2.3	Α
							1.3	
T_{rr}	Reverse Recovery Time	$I_F = 8.2 A,$		Q2		15		ns
Qrr	Reverse Recovery Charge	$d_{iF}/d_t = 300 \text{ A/}\mu\text{s}$	(Note 3)			6		nC
T _{rr}	Reverse Recovery Time	$I_F = 6.9 A,$		Q1		19		ns
Qrr	Reverse Recovery Charge	$d_{iF}/d_t = 100 \text{ A/}\mu\text{s}$	(Note 3)			10		nC
V _{SD}	Drain-Source Diode Forward Voltage	$\begin{aligned} &V_{GS} = 0 \text{ V}, I_{S} = 2.3 \text{ A} \\ &V_{GS} = 0 \text{ V}, I_{S} = 5 \text{ A} \\ &V_{GS} = 0 \text{ V}, I_{S} = 1.3 \text{ A} \end{aligned}$	(Note 2) (Note 2) (Note 2)	Q2 Q2 Q1		0.6 0.7 0.7	0.7 1.0 1.2	V

Notes

1. $R_{0,1A}$ is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{0,C}$ is guaranteed by design while $R_{0,CA}$ is determined by the user's board design.

a) 78°C/W when mounted on a 0.5in² pad of 2 oz copper

125°C/W when mounted on a 0.02 in² pad of 2 oz copper

135°C/W when mounted on a minimum pad.

Scale 1 : 1 on letter size paper

- 2. Pulse Test: Pulse Width < $300\mu s$, Duty Cycle < 2.0%
- 3. See "SyncFET Schottky body diode characteristics" below.
- 4. FDS6900AS_NL is a lead free product. The FDS6900AS_NL marking will appear on the reel label.

Typical Characteristics: Q2

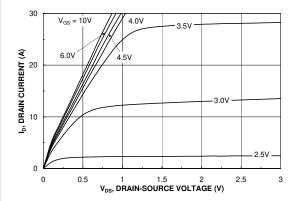


Figure 1. On-Region Characteristics.

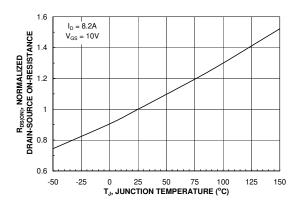


Figure 3. On-Resistance Variation with Temperature.

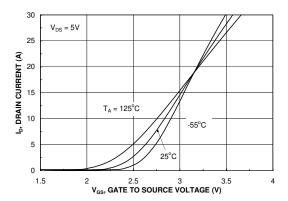


Figure 5. Transfer Characteristics.

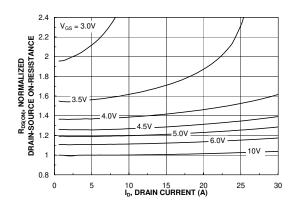


Figure 2. On-Resistance Variation with Drain Current and Gate Voltage.

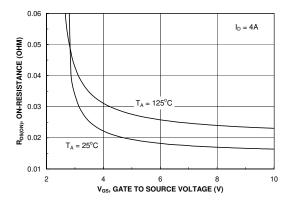


Figure 4. On-Resistance Variation with Gate-to-Source Voltage.

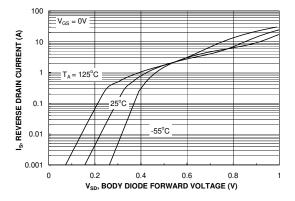
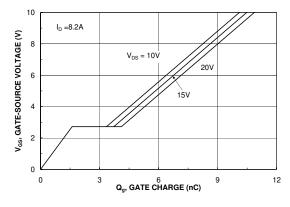



Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature.

Typical Characteristics: Q2

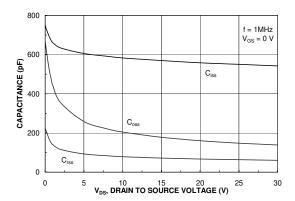
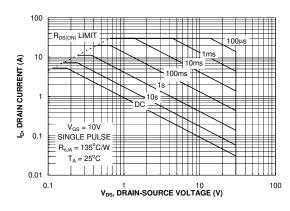



Figure 7. Gate Charge Characteristics.

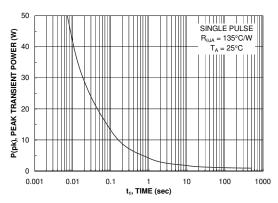


Figure 9. Maximum Safe Operating Area.

Figure 10. Single Pulse Maximum Power Dissipation.

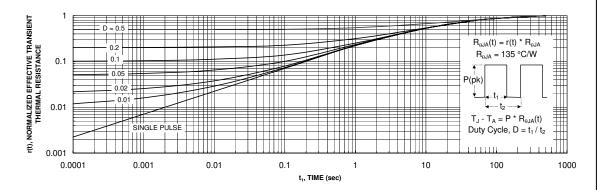


Figure 11. Transient Thermal Response Curve.

Thermal characterization performed using the conditions described in Note 1c. Transient thermal response will change depending on the circuit board design.

Typical Characteristics Q1

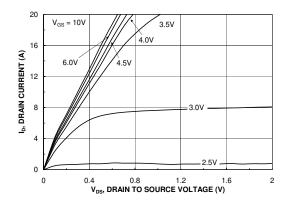


Figure 12. On-Region Characteristics.

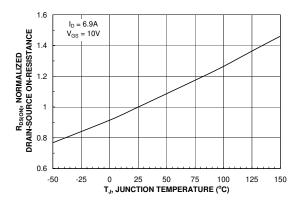


Figure 14. On-Resistance Variation with Temperature.

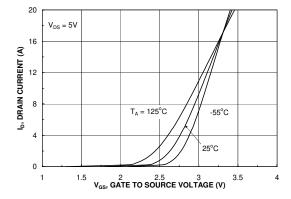


Figure 16. Transfer Characteristics.

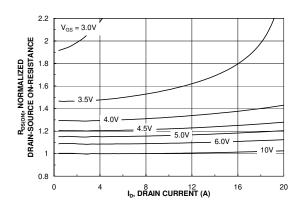


Figure 13. On-Resistance Variation with Drain Current and Gate Voltage.

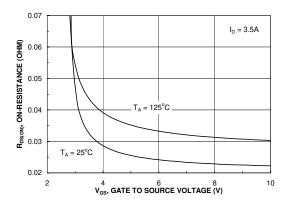


Figure 15. On-Resistance Variation with Gate-to-Source Voltage.

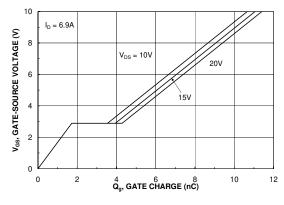



Figure 17. Body Diode Forward Voltage Variation with Source Current and Temperature.

Typical Characteristics Q1

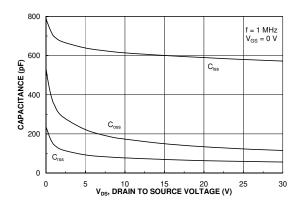
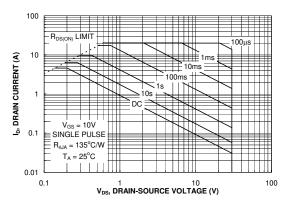



Figure 18. Gate Charge Characteristics.

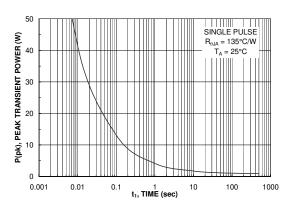
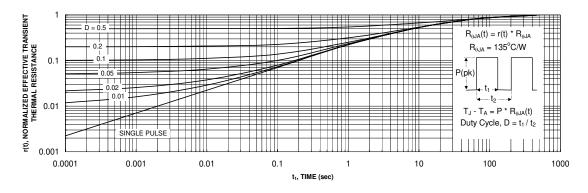
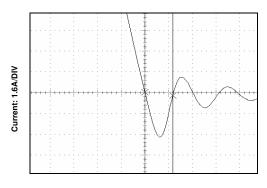


Figure 20. Maximum Safe Operating Area.

Figure 21. Single Pulse Maximum Power Dissipation.




Figure 22. Transient Thermal Response Curve.

Thermal characterization performed using the conditions described in Note 1c. Transient thermal response will change depending on the circuit board design.

Typical Characteristics (continued)

SyncFET Schottky Body Diode Characteristics

Fairchild's SyncFET process embeds a Schottky diode in parallel with PowerTrench MOSFET. This diode exhibits similar characteristics to a discrete external Schottky diode in parallel with a MOSFET. **Figure 23** shows the reverse recovery characteristic of the FDS6900AS.

Time: 10nS/DIV

Figure 23. FDS6900AS SyncFET body diode reverse recovery characteristic.

For comparison purposes, **Figure 24** shows the reverse recovery characteristics of the body diode of an equivalent size MOSFET produced without SyncFET (FDS6690).

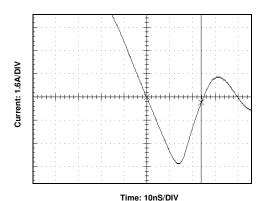


Figure 24. Non-SyncFET (FDS6690) body diode reverse recovery characteristic.

Schottky barrier diodes exhibit significant leakage at high temperature and high reverse voltage. This will increase the power in the device.

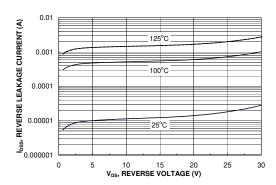
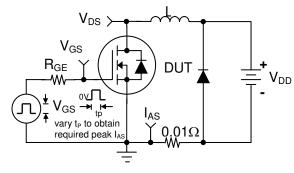



Figure 25. SyncFET body diode reverse leakage versus drain-source voltage and temperature

Typical Characteristics

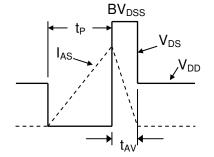
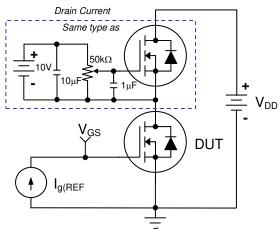



Figure 26. Unclamped Inductive Load Test Circuit

Figure 27. Unclamped Inductive Waveforms

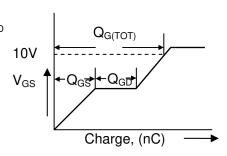
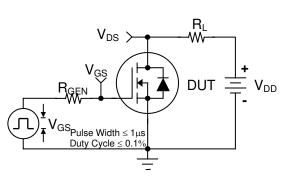



Figure 28. Gate Charge Test Circuit

Figure 29. Gate Charge Waveform

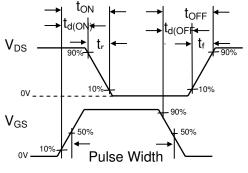


Figure 30. Switching Time Test Circuit

Figure 31. Switching Time Waveforms

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

 $ACEx^{TM}$ PowerSaver™ SuperSOT™-8 **FAST®** ISOPLANAR™ ActiveArray™ $\mathsf{PowerTrench}^{\circledR}$ SyncFETTM FASTr™ LittleFET™ Bottomless™ $\mathsf{FPS^{\mathsf{TM}}}$ MICROCOUPLER™ QFET[®] TinyLogic[®] Build it Now™ MicroFET™ QSTM TINYOPTO™ FRFET™ TruTranslation™ CoolFET™ MicroPak™ QT Optoelectronics™ GlobalOptoisolator™ $CROSSVOLT^{TM}$ MICROWIRE™ Quiet Series™ UHC™ GTO™ $\mathsf{UltraFET}^{\circledR}$ $\mathsf{DOME}^{\mathsf{TM}}$ RapidConfigure™ $\mathsf{MSX^{\mathsf{TM}}}$ HiSeC™ $\mathsf{EcoSPARK^{TM}}$ RapidConnect™ UniFET™ $MSXPro^{TM}$ I²CTM E²CMOSTM OCX^{TM} uSerDes™ VCX^{TM} i-LoTM SILENT SWITCHER® EnSigna™ OCXPro™ Wire™ ImpliedDisconnect™ $\mathsf{OPTOLOGIC}^{\circledR}$ SMART START™ FACT™ IntelliMAXTM **SPMTM** OPTOPLANAR™ FACT Quiet Series™ PACMANTM Stealth™ Across the board. Around the world.™ РОРТМ SuperFET™ The Power Franchise® Power247™ SuperSOT™-3 Programmable Active Droop™ SuperSOT™-6 PowerEdge™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS. NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Rev. I16

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and h

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Phone: 421 33 790 2910

Japan Customer Focus Center

Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative