imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Dual Notebook Power Supply N-Channel PowerTrench[®] SyncFET[™]

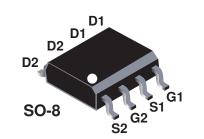
General Description

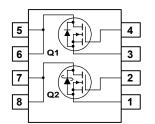
The FDS6984S is designed to replace two single SO-8 MOSFETs and Schottky diode in synchronous DC:DC power supplies that provide various peripheral voltages for notebook computers and other battery powered electronic devices. FDS6984S contains two unique 30V, N-channel, logic level, PowerTrench MOSFETs designed to maximize power conversion efficiency.

The high-side switch (Q1) is designed with specific emphasis on reducing switching losses while the low-side switch (Q2) is optimized to reduce conduction losses. Q2 also includes an integrated Schottky diode using Fairchild's monolithic SyncFET technology.

Features

• Q2: Optimized to minimize conduction losses Includes SyncFET Schottky diode


8.5A, 30V $R_{DS(on)} = 19 \text{ m}\Omega @ V_{GS} = 10V$


 $R_{DS(on)}$ = 28 m Ω @ V_{GS} = 4.5V

• Q1: Optimized for low switching losses Low gate charge (5 nC typical)

5.5A, 30V $R_{DS(on)} = 0.040\Omega @ V_{GS} = 10V$

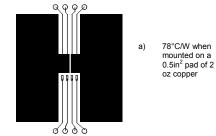
 $R_{DS(on)} = 0.055\Omega @ V_{GS} = 4.5V$

Absolute Maximum Ratings $T_{A} = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter			Q2	Q1	Units
V _{DSS}	Drain-Source	Voltage		30	30	V
V _{GSS}	Gate-Source	Voltage		±20	±20	V
ID	Drain Current	- Continuous	(Note 1a)	8.5	5.5	A
		- Pulsed		30	20	
PD	Power Dissipation for Dual Operation			:	W	
	Power Dissipation for Single Operation (Note 1a)			1		
			(Note 1b)		1	
			(Note 1c)	0	.9	
T _J , T _{STG}	Operating and Storage Junction Temperature Range			-55 tc	°C	
Therma	I Charact	eristics				
R _{0JA}	Thermal Resistance, Junction-to-Ambient (Note 1a)			7	°C/W	
R _{eJC}	Thermal Resistance, Junction-to-Case (Note 1)			4	°C/W	
Packag	e Marking	and Ordering Ir	nformation			
Device Marking		Device	Reel Size	Tape width		Quantity
FDS6984S		FDS6984S	13"	12mm	1	2500 units

©2000 Fairchild Semiconductor Corporation

Symbol	Parameter	Test Conditions	Туре	Min	Тур	Max	Units
Off Cha	racteristics						
BV _{DSS}	Drain-Source Breakdown	V _{GS} = 0 V, I _D = 1 mA	Q2	30			V
	Voltage	V _{GS} = 0 V, I _D = 250 μA V _{DS} = 24 V, V _{GS} = 0 V	Q1	30			
DSS	Zero Gate Voltage Drain Current	$V_{DS} = 24 V, V_{GS} = 0 V$	Q2 Q1			500 1	μA
GSSF	Gate-Body Leakage, Forward	V _{GS} = 20 V, V _{DS} = 0 V	All			100	nA
GSSR	Gate-Body Leakage, Reverse	V_{GS} = -20 V, V_{DS} = 0 V	All			-100	nA
On Char	acteristics (Note 2)						•
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 1 \text{ mA}$	Q2	1		3	V
$\Delta V_{GS(th)}$	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 250 \ \mu A$ $I_D = 1 \ mA$, Referenced to 25°C	Q1 Q2	1	-6	3	mV/°C
$\Delta V GS(th)$ ΔT_{J}	Temperature Coefficient						mv/°C
-		I _D = 250 uA, Referenced to 25°C	Q1		-4		
R _{DS(on)}	Static Drain-Source On-Resistance	V _{GS} = 10 V, I _D = 8.5 A V _{GS} = 10 V, I _D = 8.5 A, T _J = 125°C	Q2		16 24	19 32	mΩ
	On-Resistance	$V_{GS} = 10$ V, $I_D = 8.5$ A, $I_J = 125^{\circ}$ C $V_{GS} = 4.5$ V, $I_D = 7$ A			24	28	
		V_{GS} = 4.5 V, I_D = 7 A V_{GS} = 10 V, I_D = 5.5 A	Q1		35	40	
		$V_{GS} = 10 \text{ V}, \text{ I}_D = 5.5 \text{ A}, \text{ T}_J = 125^{\circ}\text{C}$			53 48	60 55	
I _{D(on)}	On-State Drain Current	V_{GS} = 4.5 V, I_D = 4.6 A V_{GS} = 10 V, V_{DS} = 5 V	Q2	30	40	55	A
·D(01)			Q1	20			
g fs	Forward Transconductance	V _{DS} = 5 V, I _D = 8.5 A V _{DS} = 5 V, I _D = 5.5 A	Q2 Q1		26 40		S
Dynami	c Characteristics	VDS - 3 V, ID - 3.3 A			40		
	Input Capacitance	V _{DS} = 15 V, V _{GS} = 0 V,	Q2		1233		pF
		f = 1.0 MHz	Q1		462		P -
Coss	Output Capacitance		Q2 Q1		344 113		pF
C _{rss}	Reverse Transfer Capacitance		Q1 Q2		106		pF
			Q1		40		
Switchir	g Characteristics (Note 2					-	
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 15 \text{ V}, \text{ I}_{D} = 1 \text{ A},$	Q2		8 10	16	ns
t,	Turn-On Rise Time	V_{GS} = 10V, R_{GEN} = 6 Ω	Q1 Q2		5	18 10	ns
-1			Q1		14	25	
t _{d(off)}	Turn-Off Delay Time		Q2 Q1		25 21	40 34	ns
t _f	Turn-Off Fall Time	-	Q1 Q2		11	20	ns
			Q1		7	14	
Qg	Total Gate Charge	Q2 V _{DS} = 15 V, I _D = 8.5 A, V _{GS} =5V	Q2 Q1		11 8.5	16 12	nC
Q _{gs}	Gate-Source Charge		Q2		5	12	nC
-	Osta Dasia Oh	Q1 V _{DS} = 15 V, I _D = 5.5 A, V _{GS} = 5 V	Q1		2.4		
Q_{gd}	Gate-Drain Charge	$v_{DS} - 15 v, i_D - 5.5 A, v_{GS} = 5 V$	Q2 Q1		4 3.1		nC


FDS6680S Rev C (W)

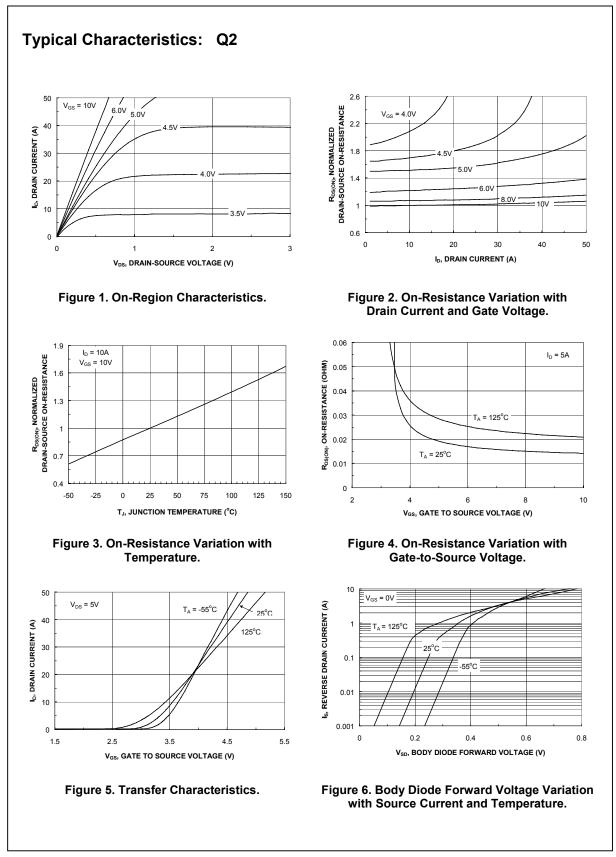
Symbol	Parameter	Test Conditions		Туре	Min	Тур	Max	Units
Drain-S	ource Diode Characteris	stics and Maximum Rat	tings					
ls	Maximum Continuous Drain-Source Diode Forward Current			Q2 Q1			3.0 1.3	A
trr	Reverse Recovery Time	I _F = 10A,		Q2		17		ns
Q _{rr}	Reverse Recovery Charge	$d_{iF}/d_t = 300 \text{ A}/\mu \text{s}$ (Note	e 3)			12.5		nC
V_{SD}	Drain-Source Diode Forward Voltage		(Note 2) (Note 2)	Q2 Q1		0.5 0.74	0.7 1.2	V

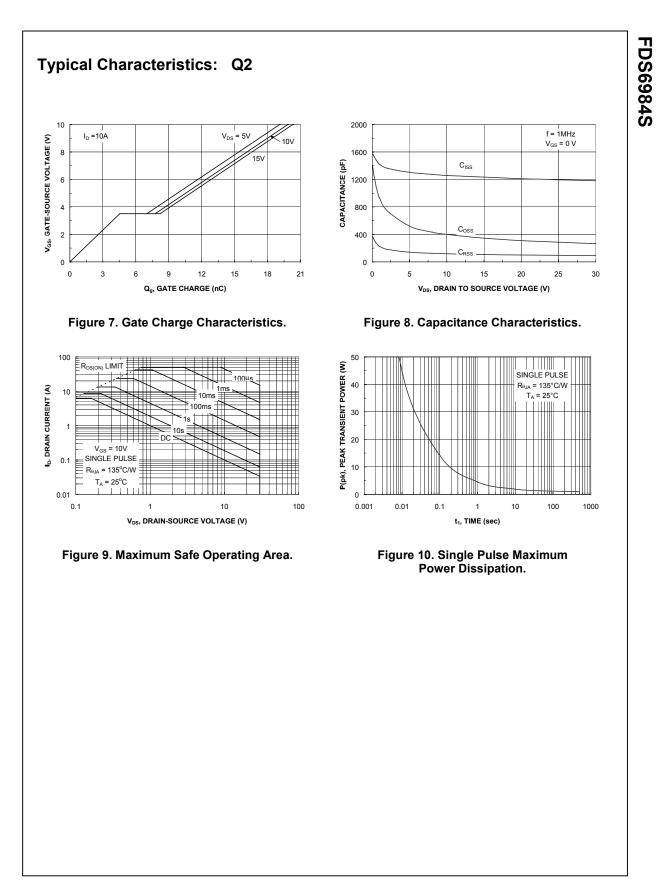
Notes:

1. R_{8JA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.

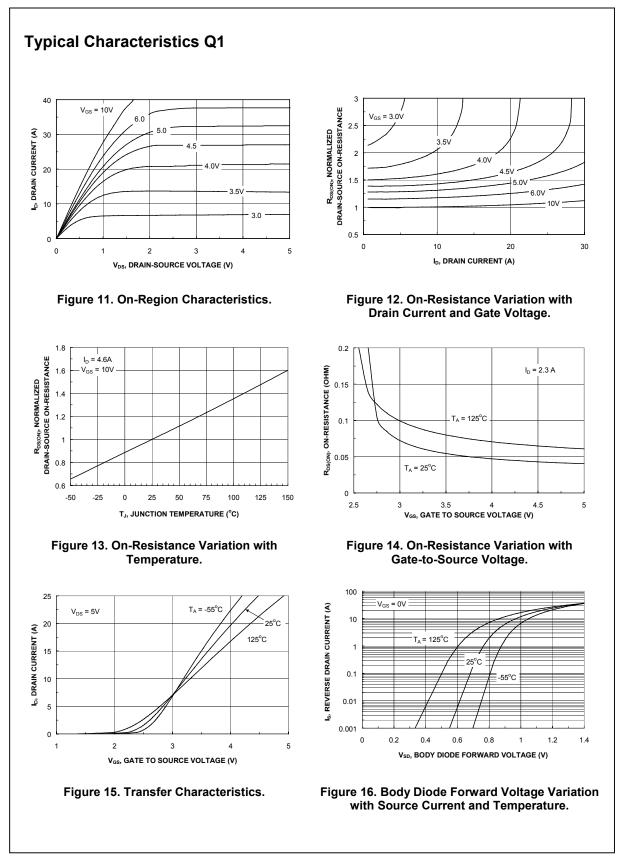
b)

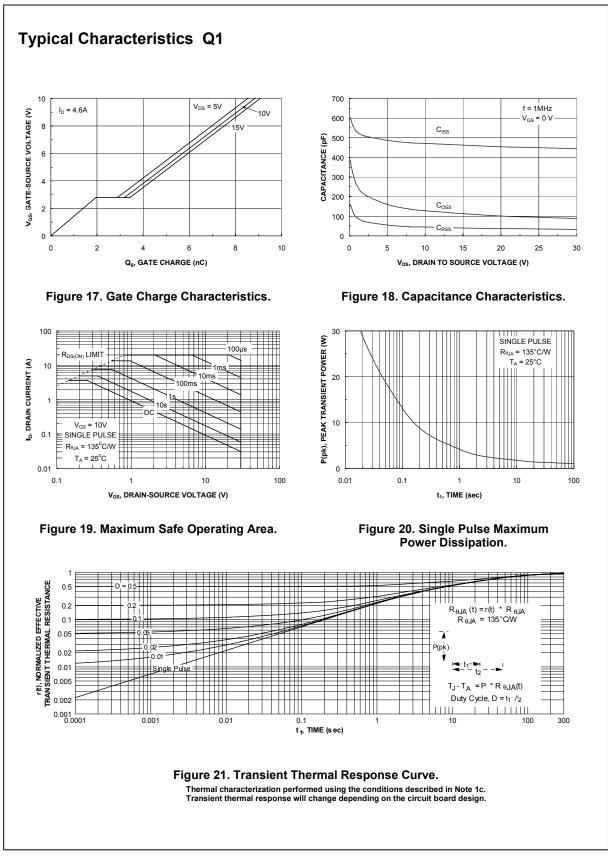
125°C/W when mounted on a 0.02 in² pad of 2 oz copper


.....

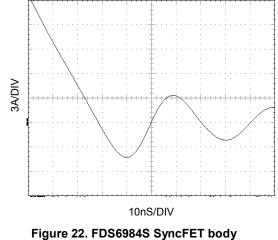

135°C/W when mounted on a c) minimum pad.

Scale 1 : 1 on letter size paper

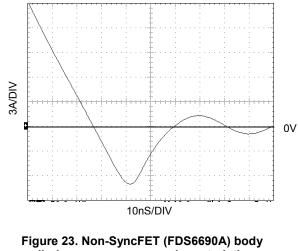

See "SyncFET Schottky body diode characteristics" below.
Pulse Test: Pulse Width < 300µs, Duty Cycle < 2.0%


FDS6680S Rev C (W)

FDS6680S Rev C (W)



Typical Characteristics (continued)


SyncFET Schottky Body Diode Characteristics

Fairchild's SyncFET process embeds a Schottky diode in parallel with PowerTrench MOSFET. This diode exhibits similar characteristics to a discrete external Schottky diode in parallel with a MOSFET. Figure 22 shows the reverse recovery characteristic of the FDS6984S.

diode reverse recovery characteristic.

For comparison purposes, Figure 23 shows the reverse recovery characteristics of the body diode of an equivalent size MOSFET produced without SyncFET (FDS6690A).

diode reverse recovery characteristic.

Schottky barrier diodes exhibit significant leakage at high temperature and high reverse voltage. This will increase the power in the device.

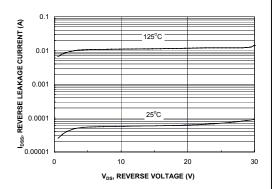


Figure 24. SyncFET body diode reverse leakage versus drain-source voltage and temperature.

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™ Bottomless™ CoolFET™ CROSSVOLT™ DOME™ E²CMOS[™] EnSigna™ FACT™ FACT Quiet Series™ **FAST[®]**

FASTr™ GlobalOptoisolator™ GTO™ HiSeC™ **ISOPLANAR™** MICROWIRE™ **OPTOLOGIC**[™] OPTOPLANAR™ POP™ PowerTrench[®]

QFET™ QS™ QT Optoelectronics[™] Quiet Series™ SuperSOT™-3 SuperSOT™-6 SuperSOT[™]-8 SyncFET™ TinyLogic™ UHC™

VCX™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
	•	Rev. F1