imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

June 2003

FAIRCHILD SEMICONDUCTOR®

FDS6993

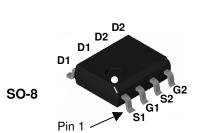
Dual P-Channel PowerTrench[®] MOSFET

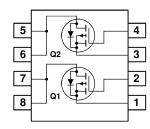
General Description

These P-Channel MOSFETs are made using FSC's **PowerTrench**[®] technology. They are packaged in a single SO-8 which is designed to allow two MOSFETs to operate independenly, each with it's own heat sink. The combination of silicon and package technologies results in minimum board space and cost.

Features

• Q1: P-Channel

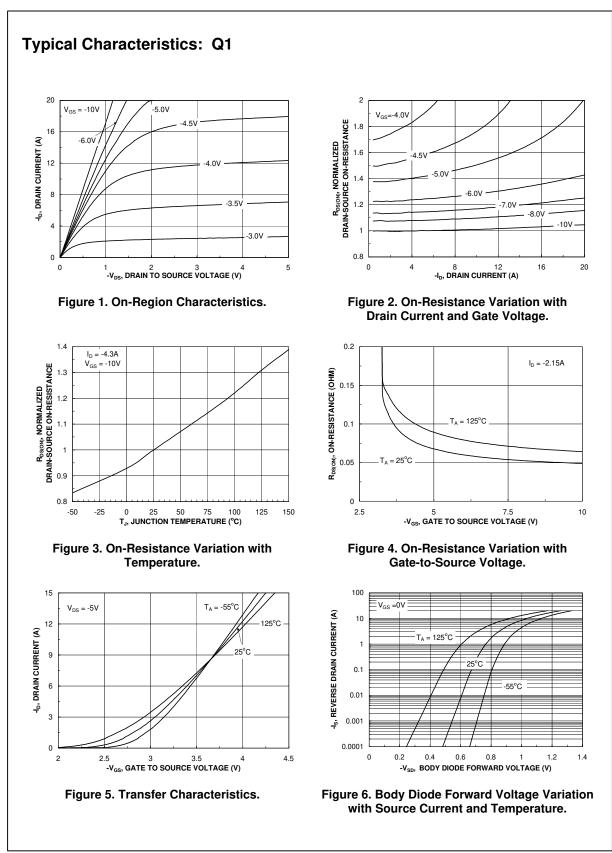

-4.3A, -30V $R_{DS(on)} = 55m\Omega @ V_{GS} = -10V$

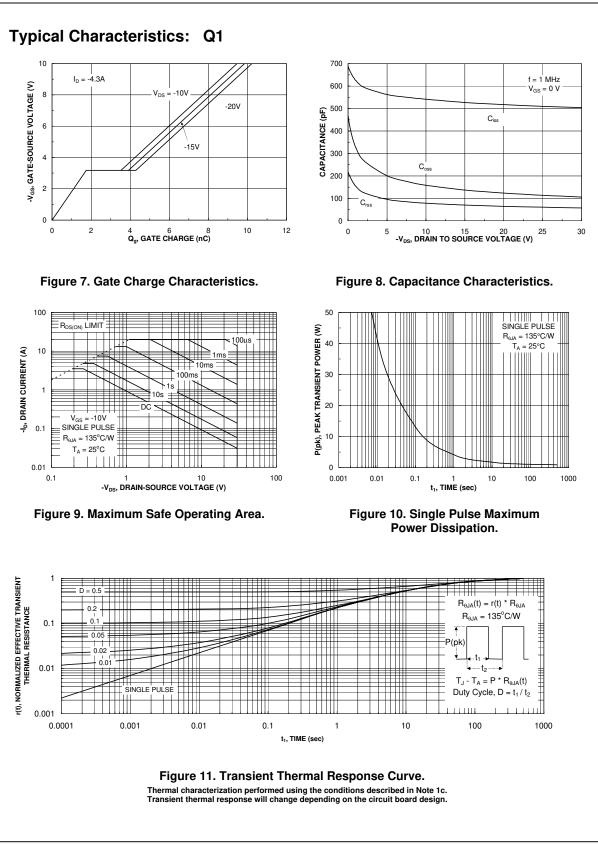

- $\label{eq:R_DS(on)} \begin{array}{l} \mathsf{R}_{\mathsf{DS}(on)} = 85 m \Omega @ \mathsf{V}_{\mathsf{GS}} = -4.5\mathsf{V} \\ \textbf{Q2:} \qquad \mathsf{P-Channel} \end{array}$
- –6.8A, –12V $R_{DS(on)}$ = 17m Ω @ V_{GS} = –4.5V

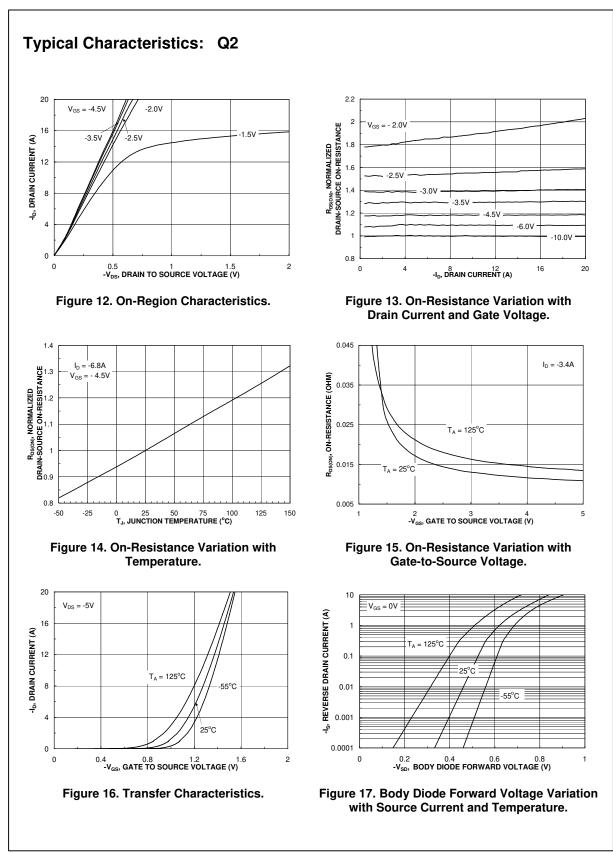
 $R_{DS(on)} = 24m\Omega @ V_{GS} = -2.5V$

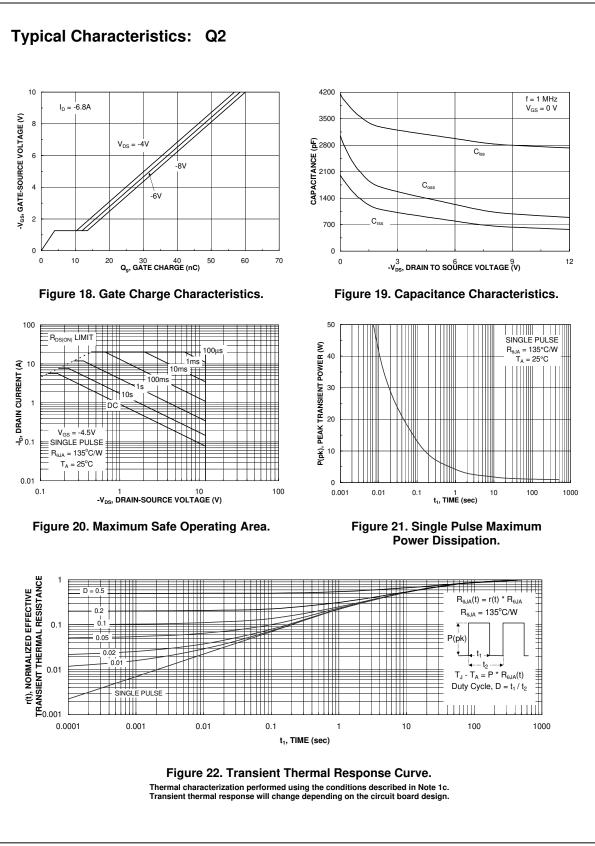
 $R_{DS(on)} = 30m\Omega @ V_{GS} = -1.8V$

 High power and handling capability in a widely used surface mount package


Absolute Maximum Ratings T_A = 25°C unless otherwise noted


Symbol		Parameter		Q1	Q2	Units
V _{DSS}	Drain-Source	e Voltage		-30	-12	V
V _{GSS}	Gate-Source	e Voltage		±25	±8	V
ID	Drain Currer	nt - Continuous	(Note 1a)	-4.3	-6.8	A
		- Pulsed		-20	-20	
P _D	Power Dissipation for Dual Operation			2		W
	Power Dissipation for Single Operation (Note 1a)			1.6		
	(Note 1b)			1		
			(Note 1c)	0	.9	
T _J , T _{STG}	Operating an	nd Storage Junction Temp	erature Range	–55 to	o +150	°C
Therma	I Charact	eristics				
R _{eJA}	Thermal Resistance, Junction-to-Ambient (Note		ent (Note 1a)	78		°C/W
R _{eJC}	Thermal Res	sistance, Junction-to-Case	(Note 1)	40		°C/W
Packag	e Marking	g and Ordering l	nformation			
Device Marking		Device	Reel Size	Tape wi	dth	Quantity
FDS6993		FDS6993	13"	12mn	12mm	


©2003 Fairchild Semiconductor Corporation


Symbol	Parameter	Test Conditions	Туре	Min	Тур	Мах	Units
Off Cha	racteristics	·			•	•	
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 V, I_D = -250 \mu A$ $V_{GS} = 0 V, I_D = -250 \mu A$	Q1 Q2	-30 -12			V
ΔBV_{DSS} ΔT_J	Breakdown Voltage Temperature Coefficient	$I_D = -250 \ \mu$ A, Referenced to 25°C $I_D = -250 \ \mu$ A, Referenced to 25°C	Q1 Q2		-21 -0.9		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -24 V$, $V_{GS} = 0 V$ $V_{DS} = -10 V$, $V_{GS} = 0 V$	Q1 Q2			-1 -1	μA
I _{GSS}	Gate-Body Leakage		Q1 Q2			±100 ±100	nA
On Cha	racteristics (Note 2)						
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = -250 \ \mu A$ $V_{DS} = V_{GS}, I_D = -250 \ \mu A$	Q1 Q2	-1 -0.4	-1.8 -0.5	3 1.5	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	$I_D = -250 \ \mu$ A, Referenced to 25°C $I_D = -250 \ \mu$ A, Referenced to 25°C	Q1 Q2		4 3		mV/°C
R _{DS(on)}	Static Drain-Source On-Resistance		Q1		48 64 74	55 80 85	mΩ
		$ \begin{array}{l} V_{GS}=-4.5 \ V, \ I_{D}=-6.8 \ A \\ V_{GS}=-4.5 \ V, \ I_{D}=-6.8 \ A, \ T_{J}=125^{\circ}C \\ V_{GS}=-2.5 \ V, \ I_{D}=-5.9 \ A \\ V_{GS}=-1.8 \ V, \ I_{D}=-5.0 \end{array} $	Q2		11 14 14 19	17 24 24 30	
I _{D(on)}	On-State Drain Current	$V_{GS} = -10 \text{ V}, V_{DS} = -5 \text{ V}$ $V_{GS} = -4.5 \text{ V}, V_{DS} = -5 \text{ V}$	Q1 Q2	-20 -20			A
g fs	Forward Transconductance	$V_{DS} = -10 \text{ V}, I_D = -7 \text{ A}$ $V_{DS} = -5 \text{ V}, I_D = -5 \text{ A}$	Q1 Q2		9 34		S
Dynami	c Characteristics						
C _{iss}	Input Capacitance	Q1 V _{DS} = -15 V, V _{GS} = 0 V, f = 1.0 MHz	Q1 Q2		530 2980		pF
C _{oss}	Output Capacitance	Q2	Q1 Q2		140 1230		pF
C _{rss}	Reverse Transfer Capacitance	$V_{DS} = -6 V, V_{GS} = 0 V, f = 1.0 MHz$	Q1 Q2		70 790		pF

Symbol	Parameter	Test Conditions	Туре	Min	Тур	Max	Units
Switchi	ng Characteristics (Note	2)					
t _{d(on)}	Turn-On Delay Time	Q1 V _{DD} = -15 V, I _D = -1 A,	Q1 Q2		10 19	19 34	ns
t _r	Turn-On Rise Time	$V_{GS} = -10V, R_{GEN} = 6 \Omega$	Q1 Q2		14 20	26 35	ns
t _{d(off)}	Turn-Off Delay Time	Q2 $V_{DD} = -6 V, I_D = -1 A,$	Q1 Q2		14 134	24 215	ns
t _f	Turn-Off Fall Time	$V_{GS} = -4.5V, R_{GEN} = 6 \Omega$	Q1 Q2		9 121	18 193	ns
Qg	Total Gate Charge	Q1 $V_{DS} = -15 \text{ V}, \text{ I}_{D} = -4.3 \text{ A},$	Q1 Q2		5.5 32	7.7 45	nC
Q _{gs}	Gate-Source Charge	V _{GS} = -5 V Q2	Q1 Q2		1.8 4.0		nC
Q _{gd}	Gate-Drain Charge	$V_{DS} = -6 V, I_D = -6.8 A, V_{GS} = -5 V$	Q1 Q2		2.2 8.0		nC
Drain-S	ource Diode Character	istics and Maximum Rating	s				
						-1.3	Α
	Maximum Continuous Drain-	Source Diode Forward Current	Q1 Q2			-1.3	
I _S V _{SD}	Maximum Continuous Drain- Drain-Source Diode Forward Voltage				-0.8 -0.6	-	V
I _S V _{SD} otes: R _{0JA} is the su	Drain-Source Diode Forward Voltage	$V_{GS} = 0 \text{ V}, \text{ I}_{S} = -1.3 \text{ A}$ (Note 2)	Q2 Q1 Q2	c) 1	-0.6	-1.3 -1.2 -1.2 mounting a	V surface of

