imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

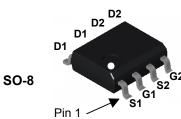
ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconduc

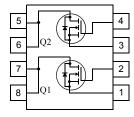
FAIRCHILD

SEMICONDUCTOR®

FDS8984 N-Channel PowerTrench[®] MOSFET

30V, 7A, 23m Ω


General Description


This N-Channel MOSFET has been designed specifically to improve the overall efficiency of DC/DC converters using either synchronous or conventional switching PWM controllers. It has been optimized for low gate charge, low $r_{\text{DS}(\text{ON})}$ and fast switching speed.

Features

- Max $r_{DS(on)}$ = 23mΩ, V_{GS} = 10V, I_D = 7A
- Max $r_{DS(on)}$ = 30mΩ, V_{GS} = 4.5V, I_D = 6A
- Low gate charge
- 100% R_G tested
- RoHS Compliant

MOSFET Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter		Ratings	Units
V _{DS}	Drain to Source Voltage		30	V
V _{GS}	Gate to Source Voltage		±20	V
I _D	Drain Current Continuous	(Note 1a)	7	А
	Pulsed		30	А
E _{AS}	Single Pulse Avalache Energy	(Note 2)	32	mJ
D	Power Dissipation for Single Operation		1.6	W
P _D	Derate above 25°C		13	mW/°C
T _J , T _{STG}	Operating and Storage Temperature		-55 to 150	°C
Therma R _{θJA}	Characteristics	(Note 1a)	78	°C/W
	,	()	-	-
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case	(Note 1)	40	°C/W

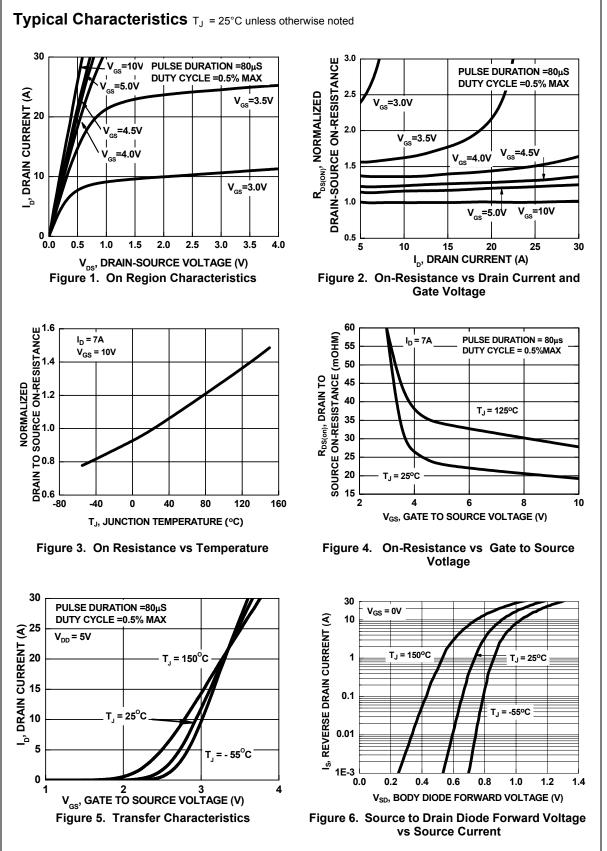
Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDS8984	FDS8984	SO-8	330mm	12mm	2500 units

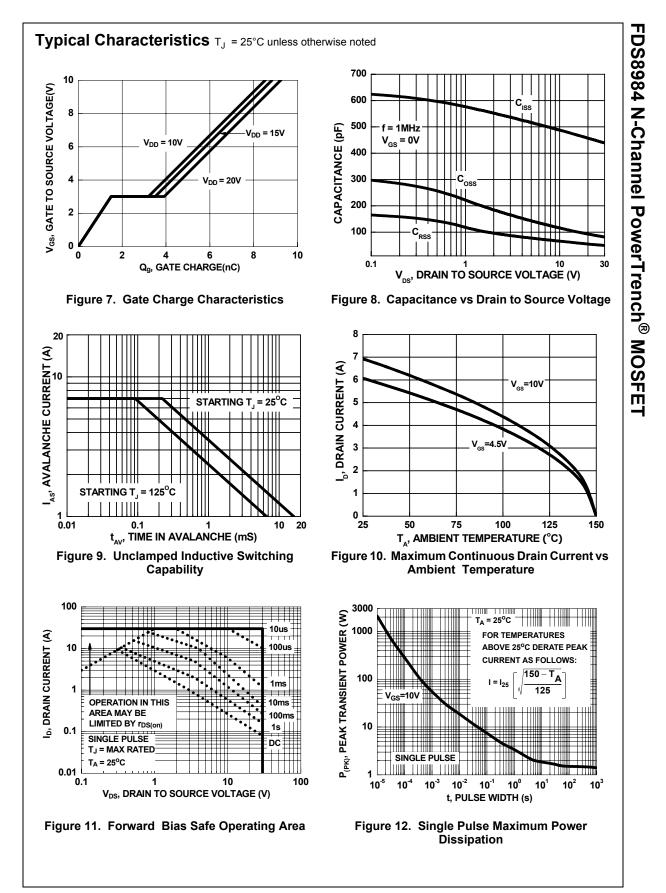
FDS8984 N-Channel PowerTrench[®] MOSFET

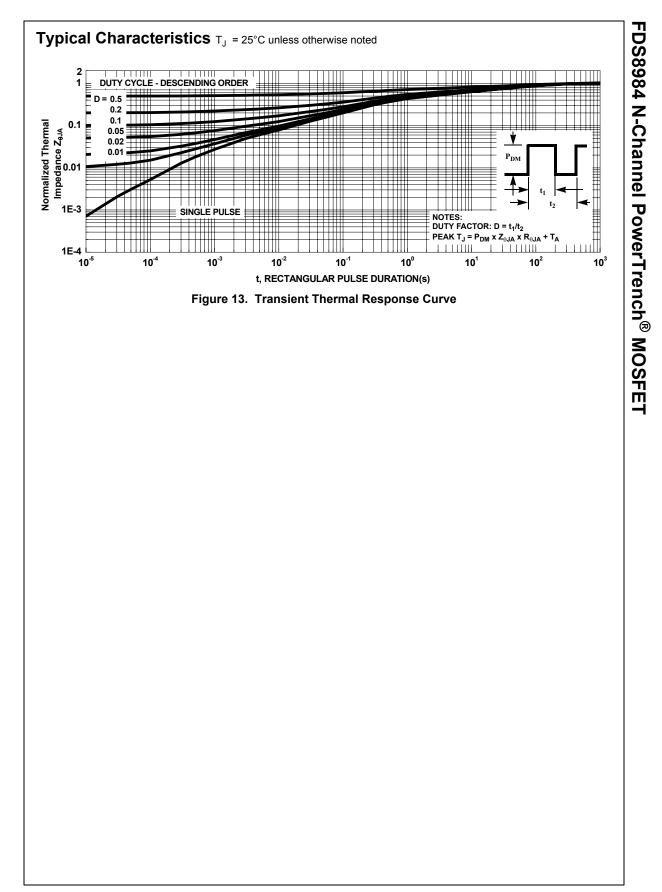
May 2007

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units	
Off Chara	acteristics						
BV _{DSS}	Drain to Source Breakdown Voltage	I _D = 250μA, V _{GS} = 0V	30			V	
ΔBV _{DSS} ΔTJ	Breakdown Voltage Temperature Coefficient	$I_D = 250 \mu A$, referenced to $25^{\circ}C$		23		mV/°C	
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 24V$ $V_{GS} = 0V$ $T_{J} = 125^{\circ}C$			1 250	μA	
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20 V, V_{DS} = 0 V$			±100	nA	
On Chara	cteristics (Note 3)						
	Gate to Source Threshold Voltage	1/-1/-250.0	1.2	1.7	2.5	V	
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{DS} = V_{GS}, I_D = 250\mu A$ $I_D = 250\mu A$, referenced to	1.2	1.7	2.5		
$\frac{\Delta V_{GS(th)}}{\Delta T_{.l}}$	Temperature Coefficient	1 _D = 250μA, telefenced to 25°C		- 4.3		mV/°C	
		V _{GS} = 10V, I _D = 7A		19	23		
	Drain to Course On Desistance	$V_{GS} = 4.5V, I_D = 6A$		24	30		
DS(on)	Drain to Source On Resistance	$V_{GS} = 10V, I_D = 7A,$ T _J = 125°C		26	32	mΩ	
C _{iss}	Characteristics Input Capacitance			475	635	pF	
C _{oss}	Output Capacitance	f = 1.0 MHz		100	135	pF	
C _{rss}	Reverse Transfer Capacitance			65	100	pF	
C _{rss}	Gate Resistance	f = 1MHz		65 0.9	100 1.6	p⊦ Ω	
C _{rss} R _G		f = 1MHz				· ·	
C _{rss} R _G Switching	Gate Resistance	f = 1MHz				<u> </u>	
C _{rss} R _G Switching t _{d(on)}	Gate Resistance g Characteristics (Note 3)			0.9	1.6	Ω	
C _{rss} R _G Switchin(d(on)	Gate Resistance g Characteristics (Note 3) Turn-On Delay Time	f = 1MHz V _{DD} = 15V, I _D = 7A V _{GS} = 10V, R _{GS} = 33Ω		0.9 5	1.6	Ω ns	
C _{rss} R _G Switching d(on) r d(off)	Gate Resistance	V _{DD} = 15V, I _D = 7A		0.9 5 9	1.6 10 18	Ω ns ns	
C _{rss} R _G Switching t _{d(on)} t _r t _{d(off)} t _f	Gate Resistance Characteristics (Note 3) Turn-On Delay Time Rise Time Turn-Off Delay Time	$V_{DD} = 15V, I_D = 7A$ $V_{GS} = 10V, R_{GS} = 33\Omega$ $V_{DS} = 15V, V_{GS} = 10V,$		0.9 5 9 42	1.6 10 18 68	Ω ns ns ns	
C _{rss} R _G Switching t _{d(on)} t _r t _{d(off)} t _f Q _g	Gate Resistance Characteristics (Note 3) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time	$V_{DD} = 15V, I_{D} = 7A$ $V_{GS} = 10V, R_{GS} = 33\Omega$ $V_{DS} = 15V, V_{GS} = 10V,$ $I_{D} = 7A$		0.9 5 9 42 21	1.6 10 18 68 34	ns ns ns ns	
C _{rss} R _G Switching i ^t d(on) i ^t r i ^t d(off) i ^t f Q _g Q _g	Gate Resistance Characteristics (Note 3) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge	$V_{DD} = 15V, I_D = 7A$ $V_{GS} = 10V, R_{GS} = 33\Omega$ $V_{DS} = 15V, V_{GS} = 10V,$		0.9 5 9 42 21 9.2	1.6 10 18 68 34 13	Ω ns ns ns ns ns	
C _{rss} R _G Switchin (t _{d(on)} t _r t _{d(off)} t _f Q _g Q _{gs}	Gate Resistance Characteristics (Note 3) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Total Gate Charge	$V_{DD} = 15V, I_D = 7A$ $V_{GS} = 10V, R_{GS} = 33\Omega$ $V_{DS} = 15V, V_{GS} = 10V,$ $I_D = 7A$ $V_{DS} = 15V, V_{GS} = 5V,$		0.9 5 9 42 21 9.2 5.0	1.6 10 18 68 34 13	Ω ns ns ns ns ns nc	
$\begin{array}{c} C_{rss} \\ \hline R_{G} \\ \hline \\ \textbf{Switching} \\ \hline \\ \textbf{Switching} \\ \hline \\ t_{d(on)} \\ t_{r} \\ \hline \\ t_{d(off)} \\ \hline \\ t_{f} \\ \hline \\ Q_{g} \\ \hline \\ Q_{g} \\ \hline \\ Q_{g} \\ \hline \\ Q_{gg} \\ \hline \\ \\ Q_{gg} \\ \hline \hline \\ Q_{gg} \\ \hline \hline \\ Q_{gg} \\ \hline \hline \\ Q_{gg} \hline \hline \\ Q_{gg} \hline \hline \\ Q_{gg} \\ \hline \hline \\ Q_{gg} \hline \hline \\ Q_{gg} \\ \hline \hline \\ Q_{gg} \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ Q_{gg} \hline \hline \hline \\ \hline \hline \hline \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \hline \hline $	Gate Resistance Characteristics (Note 3) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Gate to Source Gate Charge Gate to Drain "Miller" Charge	$V_{DD} = 15V, I_D = 7A$ $V_{GS} = 10V, R_{GS} = 33\Omega$ $V_{DS} = 15V, V_{GS} = 10V,$ $I_D = 7A$ $V_{DS} = 15V, V_{GS} = 5V,$		0.9 5 9 42 21 9.2 5.0 1.5	1.6 10 18 68 34 13	Ω ns ns ns ns nc nC	
$\begin{array}{c} C_{rss} \\ \hline R_G \\ \hline \textbf{Switching} \\ \hline \textbf{Switching} \\ \hline \textbf{Switching} \\ \hline \textbf{t}_{d(on)} \\ \hline \textbf{t}_r \\ \hline \textbf{t}_{d(off)} \\ \hline \textbf{t}_f \\ \hline \textbf{Q}_g \\ \hline \textbf{Q}_g \\ \hline \textbf{Q}_{gd} \\ \hline \textbf{Q}_{gd} \\ \hline \textbf{Drain-Sol} \end{array}$	Gate Resistance g Characteristics (Note 3) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Gate to Source Gate Charge Gate to Drain "Miller" Charge urce Diode Characteristics	$V_{DD} = 15V, I_{D} = 7A$ $V_{GS} = 10V, R_{GS} = 33\Omega$ $V_{DS} = 15V, V_{GS} = 10V,$ $I_{D} = 7A$ $V_{DS} = 15V, V_{GS} = 5V,$ $I_{D} = 7A$		0.9 5 9 42 21 9.2 5.0 1.5	1.6 10 18 68 34 13	Ω ns ns ns ns nc nC	
C_{rss} R_{G} Switching $\frac{k_{d(on)}}{k_{r}}$ $\frac{k_{d(off)}}{k_{f}}$ Q_{g} Q_{gs} Q_{gd} Drain-So	Gate Resistance Characteristics (Note 3) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Gate to Source Gate Charge Gate to Drain "Miller" Charge	$V_{DD} = 15V, I_D = 7A$ $V_{GS} = 10V, R_{GS} = 33\Omega$ $V_{DS} = 15V, V_{GS} = 10V,$ $I_D = 7A$ $V_{DS} = 15V, V_{GS} = 5V,$		0.9 5 9 42 21 9.2 5.0 1.5 2.0	1.6 10 18 68 34 13 7	Ω ns ns ns ns nc nC nC nC	
C _{rss} R _G Switching t _{d(on)} t _r t _{d(off)} t _f Q _g Q _g Q _{gs} Q _{gd}	Gate Resistance g Characteristics (Note 3) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Gate to Source Gate Charge Gate to Drain "Miller" Charge urce Diode Characteristics	$V_{DD} = 15V, I_{D} = 7A$ $V_{GS} = 10V, R_{GS} = 33\Omega$ $V_{DS} = 15V, V_{GS} = 10V,$ $I_{D} = 7A$ $V_{DS} = 15V, V_{GS} = 5V,$ $I_{D} = 7A$ $I_{SD} = 7A$		0.9 5 9 42 21 9.2 5.0 1.5 2.0 0.9	1.6 10 18 68 34 13 7 1.25	Ω ns ns ns ns nc nC nC V	



mounted on a 0.02 in pad of oz copper 0000


~~~~


Scale 1 : 1 on letter size paper

2: Starting  $T_J$  = 25°C, L = 1mH,  $I_{AS}$  = 8A,  $V_{DD}$  = 27V,  $V_{GS}$  = 10V. 3: Pulse Test:Pulse Width <300 $\mu$ S, Duty Cycle <2%.









### AIRCHILD

SEMICONDUCTOR

#### TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

| ACEx <sup>®</sup><br>Across the board. Around the world™ | HiSeC™<br><i>i-Lo</i> ™ |
|----------------------------------------------------------|-------------------------|
| ActiveArray™                                             | ImpliedDisconnect™      |
| Bottomless™                                              | IntelliMAX™             |
| Build it Now™                                            | ISOPLANAR™              |
| CoolFET™                                                 | MICROCOUPLER™           |
| CorePLUS™                                                | MicroPak™               |
| CROSSVOLT™                                               | MICROWIRE™              |
| CTL™                                                     | Motion-SPM™             |
| Current Transfer Logic™                                  | MSX™                    |
| DOME™                                                    | MSXPro™                 |
| E <sup>2</sup> CMOS™                                     | OCX™                    |
| EcoSPARK <sup>®</sup>                                    | OCXPro™                 |
| EnSigna™                                                 | OPTOLOGIC <sup>®</sup>  |
| FACT Quiet Series™                                       | OPTOPLANAR <sup>®</sup> |
| FACT <sup>®</sup>                                        | PACMAN™                 |
| FAST <sup>®</sup>                                        | PDP-SPM™                |
| FASTr™                                                   | POP™                    |
| FPS™                                                     | Power220 <sup>®</sup>   |
| FRFET <sup>®</sup>                                       | Power247 <sup>®</sup>   |
| GlobalOptoisolator™                                      | PowerEdge™              |
| GTO™                                                     | PowerSaver™             |

Power-SPM™ PowerTrench<sup>®</sup> Programmable Active Droop™ **QFET**<sup>®</sup> QS™ QT Optoelectronics™ Quiet Series™ RapidConfigure™ RapidConnect<sup>™</sup> ScalarPump™ SMART START™ SPM® STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SyncFET™ TCM™ The Power Franchise<sup>®</sup> TM

TinyBuck™ TinyLogic® TINYOPTO™ TinyPower™ TinyWire™ TruTranslation<sup>™</sup> µSerDes™ UHC® UniFET™ VCX™ Wire™

FDS8984 N-Channel PowerTrench<sup>®</sup> MOSFE

#### DISCLAIMER

DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

TinyBoost™

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.

2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

### PRODUCT STATUS DEFINITIONS Definition of Terms

| Datasheet Identification | Product Status         | Definition                                                                                                                                                                                                        |
|--------------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Advance Information      | Formative or In Design | This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.                                                                                |
| Preliminary              | First Production       | This datasheet contains preliminary data; supplementary data will<br>be published at a later date. Fairchild Semiconductor reserves the<br>right to make changes at any time without notice to improve<br>design. |
| No Identification Needed | Full Production        | This datasheet contains final specifications. Fairchild<br>Semiconductor reserves the right to make changes at any time<br>without notice to improve design.                                                      |
| Obsolete                 | Not In Production      | This datasheet contains specifications on a product that has been<br>discontinued by Fairchild Semiconductor. The datasheet is printed<br>for reference information only.                                         |
|                          |                        | Rev 127                                                                                                                                                                                                           |

Rev. 127

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

#### PUBLICATION ORDERING INFORMATION

#### LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC