imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

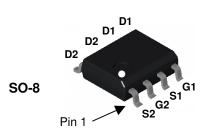
FDS9933

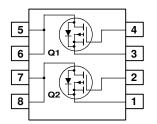
AIRCHIL

SEMICONDUCTO

Dual P-Channel 2.5V Specified PowerTrench[®] MOSFET

General Description

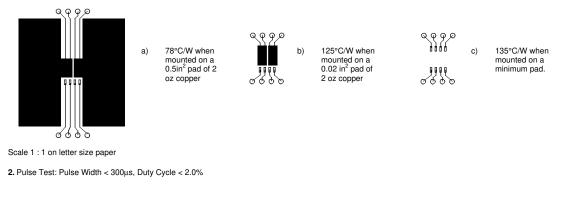

This P-Channel MOSFET is a rugged gate version of Fairchild Semiconductor's advanced PowerTrench process. It has been optimized for power management applications with a wide range of gate drive voltage (2.5V - 12V).

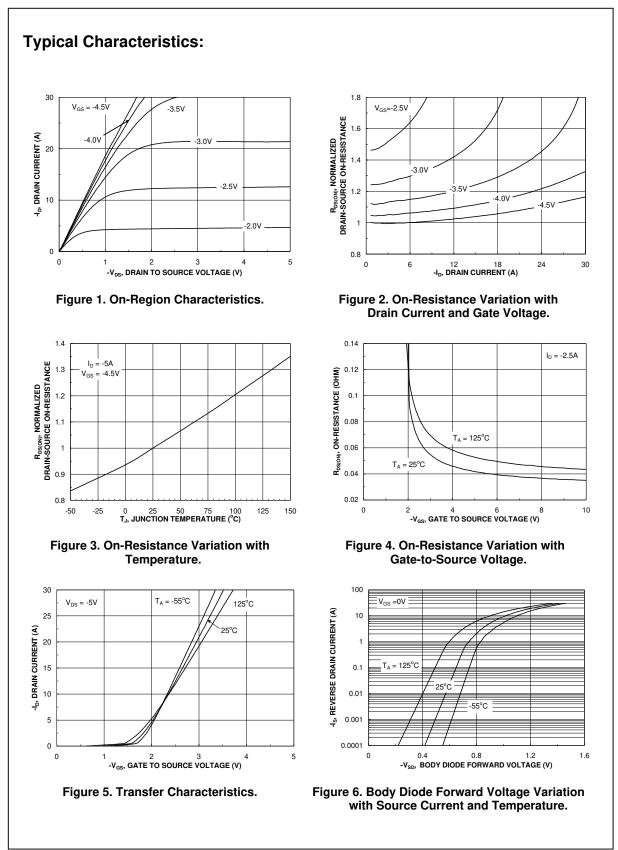

Applications

- Load switch
- Motor drive
- DC/DC conversion
- Power management

Features

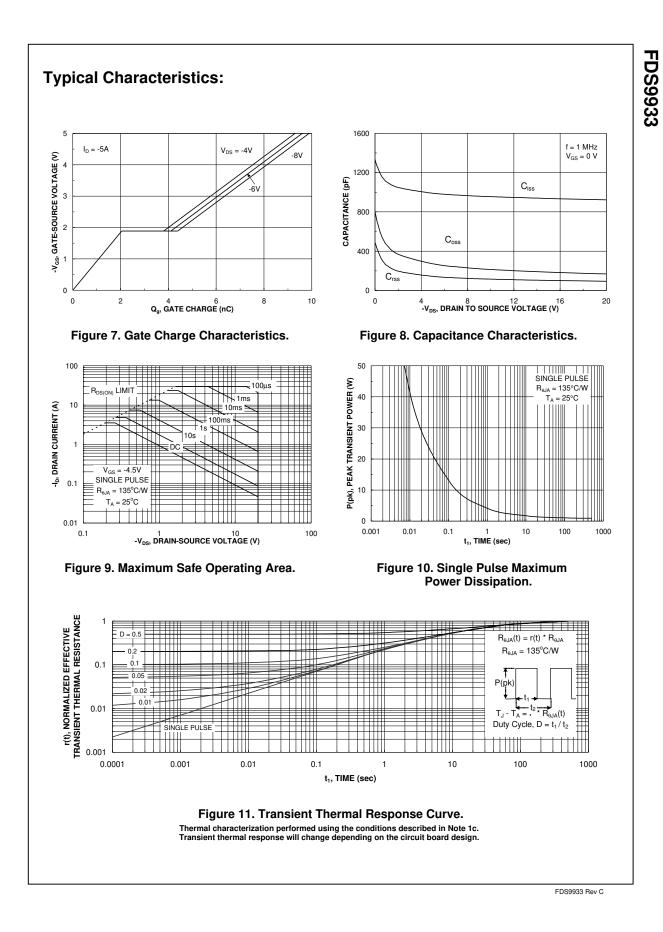
- -5 A, -20 V, $R_{DS(ON)} = 55 \text{ m}\Omega @ V_{GS} = -4.5 \text{ V}$ $R_{DS(ON)} = 90 \text{ m}\Omega @ V_{GS} = -2.5 \text{ V}$
- Extended V_{GSS} range (±12V) for battery applications
- Low gate charge
- High performance trench technology for extremely low $R_{\text{DS}(\text{ON})}$
- High power and current handling capability


Absolute Maximum Ratings TA=25°C unless otherwise noted


Symbol		Parameter		Ratings	Units
V _{DSS}	Drain-Sourc	e Voltage		-20	V
V _{GSS}	Gate-Sourc	e Voltage		±12	V
ID	Drain Curre	nt – Continuous	(Note 1a)	-5	А
		– Pulsed		-30	
P _D	Power Dissipation for Dual Operation			2	W
	Power Diss	pation for Single Operation	1 (Note 1a)	1.6	
			(Note 1b)	1	
			(Note 1c)	0.9	
T _J , T _{STG}	Operating a	nd Storage Junction Temp	erature Range	-55 to +175	°C
Therma	I Charac	teristics			
$R_{\theta JA}$	Thermal Re	hermal Resistance, Junction-to-Ambient		78	°C/W
R _{eJC}	Thermal Resistance, Junction-to-Case		e (Note 1)	40	°C/W
Packag	e Markin	g and Ordering I	nformation		
Device Marking		Device	Reel Size	Tape width	Quantity
99	33	FDS9933	13"	12mm	2500 units

©2006 Fairchild Semiconductor International

FDS9933


Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Char	acteristics					
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 V, I_D = -250 \mu A$	-20			V
<u>ΔBV_{DSS}</u> ΔT _J	Breakdown Voltage Temperature Coefficient	$I_D = -250 \ \mu\text{A}$, Referenced to 25°C		-12		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -16 V$, $V_{GS} = 0 V$			-1	μA
I _{GSS}	Gate-Body Leakage	$V_{GS} = \pm 12 \text{ V}, \qquad V_{DS} = 0 \text{ V}$			±100	nA
On Char	acteristics (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{\text{DS}} = V_{\text{GS}}, \ I_{\text{D}} = -250 \ \mu\text{A}$	-0.6	-0.8	-1.2	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	$I_D = -250 \ \mu\text{A}$, Referenced to 25°C		3		mV/°C
R _{DS(on)}	Static Drain–Source On–Resistance	$V_{GS} = -4.5 V$, $I_D = -3.2 A$ $V_{GS} = -2.5 V$, $I_D = -1.0 A$		44 72	55 90	mΩ
I _{D(on)}	On-State Drain Current		-16			Α
g FS	Forward Transconductance	$V_{DS} = -9 V$, $I_D = -3.4 A$		8		S
Dvnamic	Characteristics	•				
C _{iss}	Input Capacitance	$V_{DS} = -10 \text{ V}, \qquad V_{GS} = 0 \text{ V},$		825		pF
Coss	Output Capacitance	f = 1.0 MHz		420		pF
C _{rss}	Reverse Transfer Capacitance			150		pF
Switchin	g Characteristics (Note 2)					
t _{d(on)}	Turn-On Delay Time	$V_{\text{DD}} = -10 \ V, \qquad I_{\text{D}} = -1 \ A, \label{eq:VDD}$		16	40	ns
tr	Turn–On Rise Time	$V_{GS} = -4.5 \text{ V}, \qquad R_{GEN} = 6 \Omega$		46	80	ns
t _{d(off)}	Turn-Off Delay Time			40	70	ns
t _f	Turn-Off Fall Time			25	40	ns
Qg	Total Gate Charge	$V_{DS} = -6 V, I_D = -3.2A,$		10	20	nC
Q _{gs}	Gate-Source Charge	$V_{GS} = -4.5 V$		2.1		nC
Q _{gd}	Gate-Drain Charge			3.3		nC
Drain-So	ource Diode Characteristics	and Maximum Ratings				
Is	Maximum Continuous Drain–Source	Ŭ			-2.0	Α
V _{SD}	Drain–Source Diode Forward Voltage	$V_{GS} = 0 V$, $I_{S} = -2.0 A$ (Note 2)		-0.7	-1.2	V

FDS9933 Rev C

FDS9933

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™ FACT Quiet Series™ ActiveArray™ GlobalOptoisolator™ Bottomless™ GTO™ Build it Now™ HiSeC™ CoolFET™ I²C[™] CROSSVOLT™ i-Lo™ DOME™ ImpliedDisconnect[™] EcoSPARK™ IntelliMAX™ E²CMOS™ ISOPLANAR™ EnSigna™ LittleFET™ FACT™ MICROCOUPLER™ FAST® MicroFET™ FASTr™ MicroPak™ FPS™ MICROWIRE™ FRFET™ MSX™ MSXPro™ Across the board. Around the world.™

OCX™ OCXPro™ OPTOLOGIC[®] **OPTOPLANAR™** PACMAN™ POP™ Power247™ PowerEdge™ PowerSaver™ PowerTrench[®] QFET[®] QS™ QT Optoelectronics™ Quiet Series™ RapidConfigure™ RapidConnect™ µSerDes™ ScalarPump™

SILENT SWITCHER® SMART START™ SPM™ Stealth™ SuperFET™ SuperSOT™-3

UniFET™ UltraFET[®] VCX™ Wire™

SuperSOT™-6
SuperSOT™-8
SyncFET™
TCM™
TinyBoost™
TinyBuck™
TinyPWM™
TinyPower™
TinyLogic [®]
TINYOPTO™
TruTranslation™
UHC™

The Power Franchise[®] Programmable Active Droop™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN: NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

PRODUCT STATUS DEFINITIONS