mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

July 2008

FDW2501N

FAIRCHILD SEMICONDUCTOR

Dual N-Channel 2.5V Specified PowerTrench[®] MOSFET

General Description

This N-Channel 2.5V specified MOSFET is a rugged gate version of Fairchild Semiconductor's advanced PowerTrench process. It has been optimized for power management applications with a wide range of gate drive voltage (2.5V - 12V).

Applications

- · Load switch
- Motor drive
- DC/DC conversion
- Power management

Features

- 6 A, 20 V. $\begin{array}{l} R_{DS(ON)} = 0.018 \; \Omega \; @ \; V_{GS} = 4.5 V \\ R_{DS(ON)} = 0.028 \; \Omega \; @ \; V_{GS} = 2.5 V \end{array}$
- Extended V_{GSS} range (±12V) for battery applications.
- High performance trench technology for extremely low $R_{\text{DS}(\text{ON})}$
- Low profile TSSOP-8 package

Absolute Maximum Ratings T_{A=25°C} unless otherwise noted

Symbol	Parameter			Ratings	Units
V _{DSS}	Drain-Sou	rce Voltage		20	V
V _{GSS}	Gate-Sour	Source Voltage		±12	V
I _D	Drain Curr	ent – Continuous	(Note 1a)	6	А
		– Pulsed		30	
P _D	Power Dis	sipation	(Note 1a)	1.0	W
			(Note 1b)	0.6	
T _J , T _{STG}	Operating	and Storage Junction Tempe	rature Range	-55 to +150	°C
Therma R _{0JA}	Thermal R	cteristics	nt (Note 1a) (Note 1b)	125 208	°C/W
Packag	e Marking	ng and Ordering In	formation Reel Size	Tape width	Quantity
Device	Marking	Devide		•	

©2008 Fairchild Semiconductor Corporation

FDW2501N

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Char	acteristics	1				
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 V$, $I_D = 250 \mu A$	20			V
$\frac{\Delta BV_{DSS}}{\Delta T_J}$	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu\text{A}$, Referenced to 25°C		12		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{\text{DS}} = 16 \text{ V}, \qquad V_{\text{GS}} = 0 \text{ V}$			1	μA
I _{GSS}	Gate-Body Leakage	$V_{GS} = \pm 12 \text{ V}, V_{DS} = 0 \text{ V}$			±100	nA
On Chara	acteristics (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, \qquad I_D = 250 \ \mu A$	0.4	0.9	1.5	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	I_D = 250 µA, Referenced to 25°C		-3.2		mV/°0
$R_{\text{DS(on)}}$	Static Drain–Source On–Resistance	$ \begin{array}{l} V_{GS} = 4.5 \ V, & I_D = 6.0 \ A \\ V_{GS} = 2.5 \ V, & I_D = 5.0 \ A \\ V_{GS} = 4.5 \ V, \ I_D = 6.0A, \ T_J {=} 125^\circ C \end{array} $		15.5 19.6 20	18 28 29	mΩ
I _{D(on)}	On-State Drain Current	$V_{GS} = 4.5 \text{ V}, \qquad V_{DS} = 5 \text{ V}$	30			Α
g fs	Forward Transconductance	$V_{DS} = 5 V$, $I_{D} = 6.0 A$		32		S
Dvnamic	Characteristics	·	•	•	•	•
Ciss	Input Capacitance	$V_{DS} = 10 V$, $V_{CS} = 0 V$.		1290		pF
Coss	Output Capacitance	f = 1.0 MHz		315		pF
C _{rss}	Reverse Transfer Capacitance	1		170		pF
R _G	Gate Resistance	$V_{GS} = 15 \text{ mV}, f = 1.0 \text{ MHz}$		2.0		Ω
Switchin	g Characteristics (Note 2)					
t _{d(on)}	Turn–On Delay Time			10	18	ns
tr	Turn–On Rise Time			15	27	ns
t _{d(off)}	Turn-Off Delay Time			26	47	ns
t _f	Turn–Off Fall Time			9.5	19	ns
Qg	Total Gate Charge	$ \begin{array}{ll} V_{\text{DS}} = 10 \ V, & I_{\text{D}} = 6.0 \ \text{A}, \\ V_{\text{GS}} = 4.5 \ V & \end{array} $		12	17	nC
Q _{gs}	Gate-Source Charge			2.4		nC
Q_{gd}	Gate–Drain Charge			3.3		nC
Drain-So	ource Diode Characteristics	and Maximum Ratings				
rr	Diode Reverse Recovery Time	I _F = 6.0 A,		20		nS
),rr	Diode Reverse Recovery Charge	$d_{iF}/d_t = 100 \text{ A}/\mu\text{s}$		6.7	1	nC
ls	Maximum Continuous Drain-Source	e Diode Forward Current	1	1	0.83	Α
V _{SD}	Drain–Source Diode Forward	$V_{GS} = 0 \ V, ~~I_S = 0.83 \ A ~~(\text{Note 2})$		0.7	1.2	V

1. R_{8JA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.

a) R_{θJA} is 125°C/W (steady state) when mounted on a 1 inch² copper pad on FR-4.
b) R_{θJA} is 208°C/W (steady state) when mounted on a minimum copper pad on FR-4.

2. Pulse Test: Pulse Width < 300µs, Duty Cycle < 2.0%

FDW2501N

FDW2501N

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidianries, and is not intended to be an exhaustive list of all such trademarks.

Build it Now™	FPS™	PDP SPM™	The Power Franchise [®]
CorePLUS™	F-PFS™	Power-SPM™	the
CorePOWER™	FRFET [®]	PowerTrench [®]	puwer
CROSSVOLT™	Global Power Resource SM	Programmable Active Droop™	Tranchise
CTL™	Green FPS™	QFET®	TinyBuck
Current Transfer Logic™	Green FPS™ e-Series™	QS™	
EcoSPARK®	GTO™	Quiet Series™	TINYOPTO™
EfficentMax™	IntelliMAX™	RapidConfigure™	TinvPower™
EZSWITCH™ *	ISOPLANAR™	Saving our world, 1mW at a time™	TinvPWM™
	MegaBuck [™]	SmartMax™	TinyWire™
	MICROCOUPLER	SMART START™	
E ®		SPM®	SerDes
Fairahild®		STEALTH	
Fairchild Somiconductor [®]			UHC
		SuperSOT M-3	
FACT QUEL SELES ***	Motion-SPM ***		
EAST®		SuperSUT 11-8	VCX
Facty Core IM			VISUAIMAX
FlashWriter [®] *		Syncrei	
T Idon witter	U.		

* EZSWITCH™ and FlashWriter[®] are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MARE CHANGES WITHOUT TORTHER WITHOUT TORTHER WITHOUT TO ANT THE DEDUCTOR LEARNING TO THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or 2 system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Farichild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Farichild strongly encourages customers to purchase Farichild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Farichild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Product Status	Definition
Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.
	Formative / In Design First Production Full Production Not In Production