

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

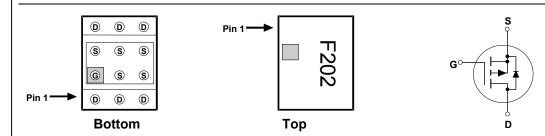
Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

FDZ202P

P-Channel 2.5V Specified PowerTrench® BGA MOSFET

General Description


Combining Fairchild's advanced 2.5V specified PowerTrench process with state of the art BGA packaging, the FDZ202P minimizes both PCB space and $R_{\rm DS(ON)}$. This BGA MOSFET embodies a breakthrough in packaging technology which enables the device to combine excellent thermal transfer characteristics, high current handling capability, ultralow profile packaging, low gate charge, and low $R_{\rm DS(ON)}$.

Applications

- · Battery management
- · Load switch
- · Battery protection

Features

- -5.5 A, -20 V. $R_{DS(ON)}$ = 45 m Ω @ V_{GS} = -4.5 V $R_{DS(ON)}$ = 75 m Ω @ V_{GS} = -2.5 V
- Occupies only 5 mm² of PCB area: only 55% of the area of SSOT-6
- Ultra-thin package: less than 0.80 mm height when mounted to PCB
- Outstanding thermal transfer characteristics: 4 times better than SSOT-6
- Ultra-low Q_q x R_{DS(ON)} figure-of-merit
- · High power and current handling capability

Absolute Maximum Ratings T_A=25°C unless otherwise noted

Symbol	pol Parameter		Ratings	Units
V_{DSS}	Drain-Source Voltage		-20	V
V_{GSS}	Gate-Source Voltage		±12	V
I _D	Drain Current - Continuous	(Note 1a)	-5.5	Α
	Pulsed		-20	
P _D	Power Dissipation (Steady State)	(Note 1a)	2	W
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to +150	°C

Thermal Characteristics

$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1a)	64	°C/W
R _{0JB}	Thermal Resistance, Junction-to-Ball	(Note 1)	8	°C/W
R _{eJC}	Thermal Resistance, Junction-to-Case	(Note 1)	0.7	°C/W

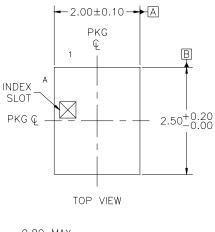
Package Marking and Ordering Information

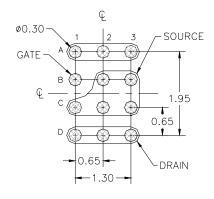
Device Marking	Device	Reel Size	Tape width	Quantity
202P	FDZ202P	7"	8mm	3000 units

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Char	acteristics			I		I
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_{D} = -250 \mu\text{A}$	-20			V
<u>ΔBV_{DSS}</u> ΔT _J	Breakdown Voltage Temperature Coefficient	$I_D = -250 \mu A$, Referenced to 25°C		-17		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -16 \text{ V}, V_{GS} = 0 \text{ V}$			– 1	μА
I_{GSSF}	Gate–Body Leakage, Forward	$V_{GS} = -12 \text{ V}, V_{DS} = 0 \text{ V}$			-100	nA
I _{GSSR}	Gate–Body Leakage, Reverse	$V_{GS} = 12 \text{ V}, \qquad V_{DS} = 0 \text{ V}$			100	nA
	acteristics (Note 2)					
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	-0.6	-0.9	-1.5	V
$\Delta V_{GS(th)} \ \Delta T_J$	Gate Threshold Voltage Temperature Coefficient	$I_D = -250 \mu A$, Referenced to 25°C		3		mV/°C
R _{DS(on)}	Static Drain–Source On–Resistance	V_{GS} = -4.5 V, I_{D} = -5.5 A V_{GS} = -2.5 V, I_{D} = -4.0 A		37 57	45 75	mΩ
		V_{GS} = -4.5 V, I_D = -5.5 A, T_J =125°C		50	65	
g _{FS}	Forward Transconductance	$V_{DS} = -5 \text{ V}, \qquad I_{D} = -5.5 \text{ A}$		15		S
Dynamic	Characteristics					
C _{iss}	Input Capacitance	$V_{DS} = -10 \text{ V}, V_{GS} = 0 \text{ V},$		884		pF
Coss	Output Capacitance	f = 1.0 MHz		258		pF
C _{rss}	Reverse Transfer Capacitance			103		pF
Switchin	g Characteristics (Note 2)					
t _{d(on)}	Turn-On Delay Time	$V_{DD} = -6 \text{ V}, \qquad I_{D} = -1 \text{ A},$		12	22	ns
t _r	Turn-On Rise Time	$V_{GS} = -4.5 \text{ V}, \qquad R_{GEN} = 6 \Omega$		9	18	ns
$t_{d(off)}$	Turn-Off Delay Time]		36	58	ns
t _f	Turn–Off Fall Time	1		24	38	ns
Qg	Total Gate Charge	$V_{DS} = -10 \text{ V}, \qquad I_{D} = -5.5 \text{ A},$		9	13	nC
Q _{gs}	Gate-Source Charge	V _{GS} = -4.5 V		2		nC
Q_{gd}	Gate-Drain Charge			3		nC
Drain-Se	ource Diode Characteristics	and Maximum Ratings				
Is	Maximum Continuous Drain-Source	<u> </u>			-1.7	Α
V_{SD}	Drain–Source Diode Forward Voltage	$V_{GS} = 0 \text{ V}, I_S = -1.7 \text{ A} \text{(Note 2)}$		-0.76	-1.2	V
t _{rr}	Diode Reverse Recovery Time	$I_F = -5.5 \text{ A},$		25	_	nS
Q _{rr}	Diode Reverse Recovery Charge	$d_{iF}/d_t = 100 \text{ A/}\mu\text{s}$		26		nC

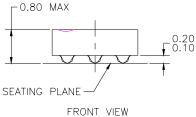
Notes

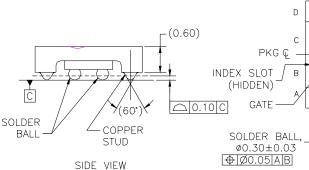
1. R_{0JA} is determined with the device mounted on a 1 in² 2 oz. copper pad on a 1.5 x 1.5 in. board of FR-4 material. The thermal resistance from the junction to the circuit board side of the solder ball, R_{0JB}, is defined for reference. For R_{0JC}, the thermal reference point for the case is defined as the top surface of the copper chip carrier. R_{0JC} and R_{0JB} are guaranteed by design while R_{0JA} is determined by the user's board design.

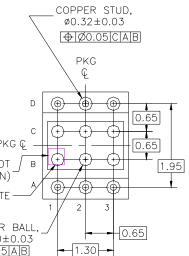

a) 64°C/W when mounted on a 1in² pad of 2 oz copper, 1.5" x 1.5" x 0.062" thick PCB



- b) 128°C/W when mounted on a minimum pad of 2 oz copper
- Scale 1:1 on letter size paper


2. Pulse Test: Pulse Width < 300μs, Duty Cycle < 2.0%


Dimensional Outline and Pad Layout



LAND PATTERN RECOMMENDATION

BOTTOM VIEW

NOTES: UNLESS OTHERWISE SPECIFIED

- ALL DIMENSIONS ARE IN MILLIMETERS.
 NO JEDEC REGISTRATION REFERENCE AS
 OF JULY 1999.
 TERMINAL CONFIGURATION TABLE.

POSITION	DESIGNATION	TYPE	
A1,A2,A3,	DRAIN	COPPER	
D1,D2,D3	DIVAIN	STUD	
B1	GATE	SOLDER	
B2,B3,C1,C2,C3	SOURCE	BALL	

Typical Characteristics

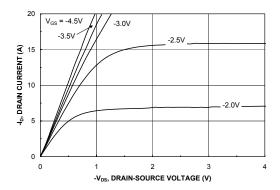


Figure 1. On-Region Characteristics.

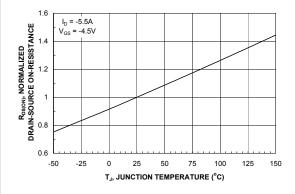


Figure 3. On-Resistance Variation with Temperature.

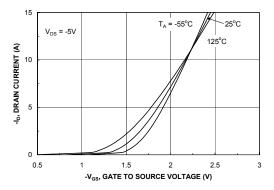


Figure 5. Transfer Characteristics.

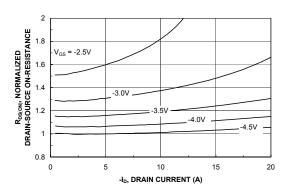


Figure 2. On-Resistance Variation with Drain Current and Gate Voltage.

Figure 4. On-Resistance Variation with Gate-to-Source Voltage.

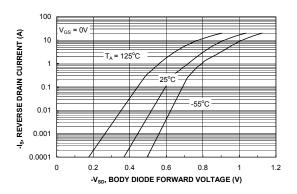
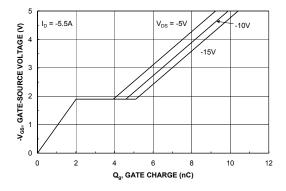



Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature.

Typical Characteristics

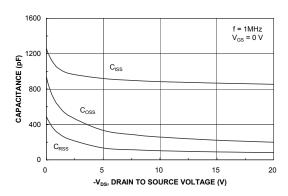


Figure 7. Gate Charge Characteristics.

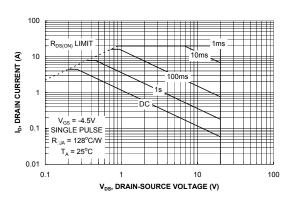


Figure 8. Capacitance Characteristics.

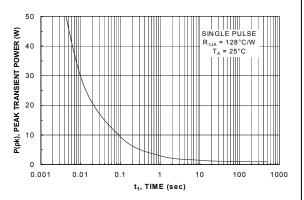


Figure 9. Maximum Safe Operating Area.

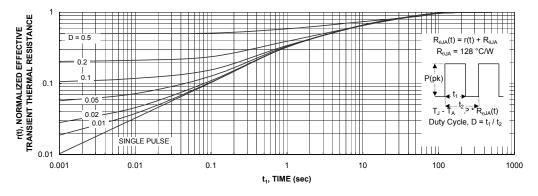


Figure 11. Transient Thermal Response Curve.

Thermal characterization performed using the conditions described in Note 1b. Transient thermal response will change depending on the circuit board design.

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

FACT Quiet Series™ ISOPLANAR™ РОРТМ ACEx[™] SuperFET™ ActiveArray™ LittleFET™ Power247™ SuperSOT™-3 FAST® MICROCOUPLER™ PowerTrench® Bottomless™ SuperSOT™-6 FASTr™ CoolFET™ **QFET® FPSTM** MicroFET™ SuperSOTTM-8 CROSSVOLT™ MicroPak™ OS^{TM} SyncFET™ FRFET™ DOME™ QT Optoelectronics™ TinyLogic[®] MICROWIRE™ GlobalOptoisolator™ TINYOPTO™ EcoSPARK™ Quiet Series™ MSXTM GTO™ TruTranslation™ E²CMOSTM MSXPro™ RapidConfigure™ HiSeC™ EnSigna™ RapidConnect™ UHC™ OCX^{TM} I2CTM $\mathsf{FACT}^\mathsf{TM}$ $Implied Disconnect^{\mathsf{TM}} \quad OCXPro^{\mathsf{TM}}$ SILENT SWITCHER® UltraFET® SMART START™ VCX^{TM} Across the board. Around the world.™ OPTOLOGIC® **OPTOPLANAR™** SPM™ The Power Franchise™ Stealth™ PACMAN™ Programmable Active Droop™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS. NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.