

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

March 2008

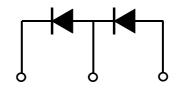
FFPF60SB60DS STEALTHTM II Rectifier

Features

- High Speed Switching, $t_{rr} < 25$ ns @ $I_F = 4A$
- · High Reverse Voltage and High Reliability
- · RoHS compliant

Applications

- · General Purpose
- Switching Mode Power Supply
- · Boost Diode in continuous mode power factor corrections
- · Power switching circuits


4A, 600V STEALTH™ II Rectifier

The FFPF60SB60DS is STEALTH™ II rectifier with soft recovery characteristics. It is silicon nitride passivated ion-implanted epitaxial planar construction.

This device is intended for use as freewheeling of boost diode in switching power supplies and other power switching applications. Their low stored charge and hyperfast soft recovery minimize ringing and electrical noise in many power switching circuits reducing power loss in the switching transistors.

1. Cathode 2. Anode(Cathode) 3. Anode

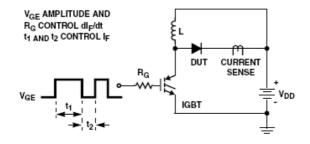
Absolute Maximum Ratings T_C = 25°C unless otherwise noted

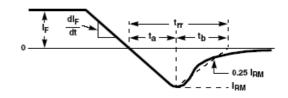
Symbol	Parameter	Ratings	Units	
V_{RRM}	Peak Repetitive Reverse Voltage	600	V	
V _{RWM}	Working Peak Reverse Voltage	600	V	
V _R	DC Blocking Voltage	600	V	
I _{F(AV)}	Average Rectified Forward Current @ T _C = 100°C	4	Α	
I _{FSM}	Non-repetitive Peak Surge Current 60Hz Single Half-Sine Wave	40	А	
T _J , T _{STG}	Operating and Storage Temperature Range	-65 to +150	°C	

Thermal Characteristics

Symbol	Parameter	Ratings	Units
R_{\thetaJC}	Maximum Thermal Resistance, Junction to Case	8.7	°C/W

Package Marking and Ordering Information

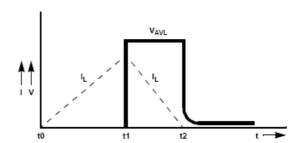

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FFPF60SB60DS	FFPF60SB60DSTU	TO220F	-	-	50


Electrical Characteristics $T_C = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter		Min.	Тур.	Max.	Units
V _{FM} 1	I _F = 4A I _F = 4A	$T_{\rm C} = 25^{\rm o}{\rm C}$ $T_{\rm C} = 125^{\rm o}{\rm C}$		2.2 1.7	2.6	V
I _{RM} 1	V _R = 600V V _R = 600V	$T_{\rm C} = 25^{\rm o}{\rm C}$ $T_{\rm C} = 125^{\rm o}{\rm C}$			100 500	μА
t _{rr}	$I_F = 1A$, di/dt = 100A/ μ s, $V_R = 30V$	$T_{\rm C} = 25^{\rm o}{\rm C}$	-	16	23	ns
t _{rr} I _{rr} S factor Q _{rr}	$I_F = 4A$, di/dt = 200A/ μ s, $V_R = 390V$	T _C = 25°C	- - -	18 2 0.7 18	25 - - -	ns A nC
t _{rr} I _{rr} S factor Q _{rr}	$I_F = 4A$, di/dt = 200A/ μ s, $V_R = 390V$	T _C = 125°C	- - -	45 2.8 1.8 64	- - -	ns A nC
W _{AVL}	Avalanche Energy (L = 40mH)		5	-	-	mJ

Notes:
1: Pulse: Test Pulse width = 300μs, Duty Cycle = 2%

Test Circuit and Waveforms



L = 40mH R < 0.1Ω

 $V_{DD} = 50V$

 $\mathsf{EAVL} = 1/2\mathsf{LI2} \; [\mathsf{V}_{\mathsf{R}(\mathsf{AVL})}/(\mathsf{V}_{\mathsf{R}(\mathsf{AVL})} - \mathsf{V}_{\mathsf{DD}})]$

Q1 = IGBT ($BV_{CES} > DUT V_{R(AVL)}$) CURRENT V_{DD} SENSE v_{DD}

Typical Performance Characteristics

Figure 1. Typical Forward Voltage Drop vs. Forward Current

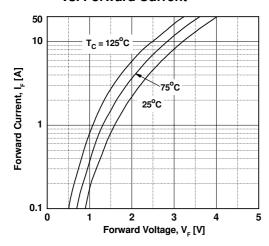


Figure 3. Typical Junction Capacitance

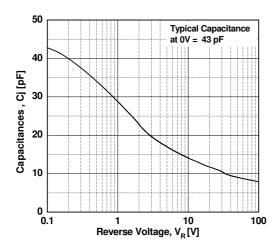


Figure 5. Typical Reverse Recovery Current vs. di/dt

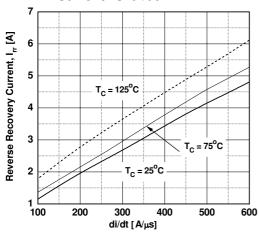


Figure 2. Typical Reverse Current vs. Reverse Voltage

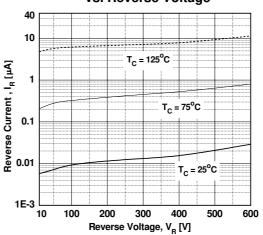
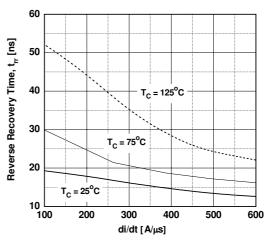
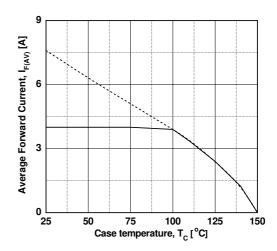




Figure 4. Typical Reverse Recovery Time vs. di/dt

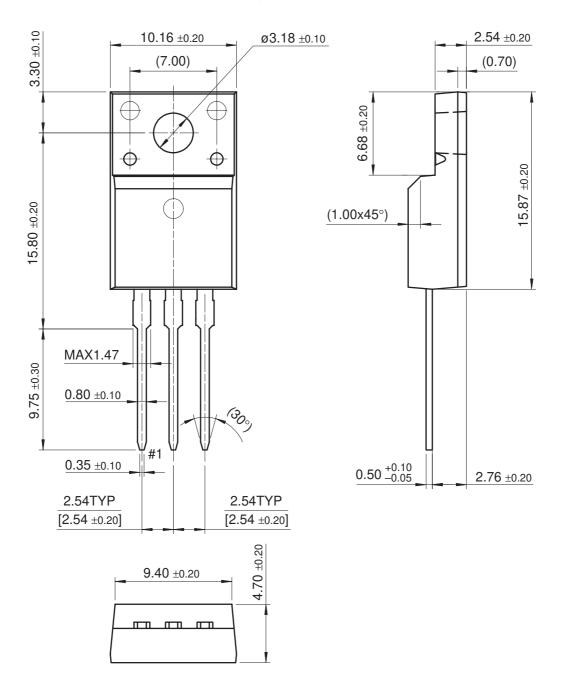


Figure 6. Forward Current Derating Curve

Mechanical Dimensions

TO220F

Dimensions in Millimeters

SupreMOSTM

TRADEMARKS

ACEx®

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidianries, and is not intended to be an exhaustive list of all such trademarks.

PDP-SPM™

HOLX	110	I DI OI W	Ouprovido
Build it Now™	FRFET [®]	Power220 [®]	SyncFET™
CorePLUS™	Global Power Resource SM	POWEREDGE [®]	SYSTEM ®
CROSSVOLT TM	Green FPS™	Power-SPM™	The Power Franchise®
CTL™	Green FPS™ e-Series™	PowerTrench [®]	the .
Current Transfer Logic™	GTO™	Programmable Active Droop™	p wer franchise
EcoSPARK [®]	i-Lo™	QFET [®]	TinyBoost™
EZSWITCH™ *	IntelliMAX™	QS™	TinyBuck™
⊏7 ™	ISOPLANAR™	QT Optoelectronics™	TinyLogic [®]
E Z	MegaBuck™	Quiet Series™	TINYOPTO™
₽ ®	MICROCOUPLER™	RapidConfigure™	TinyPower™
Fairchild [®]	MicroFET™	SMART START™	TinyPWM™
Fairchild Semiconductor®	MicroPak™	SPM [®]	TinyWire™
FACT Quiet Series™	MillerDrive™	STEALTH™	μSerDes™
FACT [®]	Motion-SPM™	SuperFET™	UHC [®]
FAST [®]	OPTOLOGIC [®]	SuperSOT™-3	Ultra FRFET™
FastvCore™	OPTOPLANAR [®]	SuperSOT™-6	UniFET™
FlashWriter [®] *	(1)®	SuperSOT™-8	VCXTM

FPS™

* EZSWITCH™ and FlashWriter® are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which,

 (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support, device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.

Rev. I33