

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

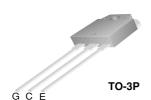
Email & Skype: info@chipsmall.com Web: www.chipsmall.com

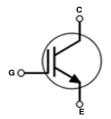
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

FGA70N30T 300V, 70A PDP IGBT

Features

- · High current capability
- Low saturation voltage: $V_{CE(sat)} = 1.5V @ I_C = 40A$
- · High input impedance
- · Fast switching
- · RoHS complaint


Application


. PDP System

General Description

Using Novel Trench IGBT Technology, Fairchild's new sesries of trench IGBTs offer the optimum performance for PDP applications where low conduction and switching losses are essential.

Absolute Maximum Ratings

Symbol	Description		Ratings	Units
V _{CES}	Collector-Emitter Voltage		300	V
V _{GES}	Gate-Emitter Voltage		±30	V
I _{C pulse(1)*}	Pulsed Collector Current	@ T _C = 25°C	160	A
	Maximum Power Dissipation	@ T _C = 25°C	201	W
P_{D}	Maximum Power Dissipation	@ T _C = 100°C	90.6	W
TJ	Operating Junction Temperature		-55 to +150	°C
T _{stg}	Storage Temperature Range		-55 to +150	°C
T _L	Maximum Lead Temp. for soldering Purposes, 1/8" from case for 5 seconds		300	°C

Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Units
$R_{\theta JC}(IGBT)$	Thermal Resistance, Junction-to-Case		0.62	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient		40	°C/W

Notes

(1)Repetitive test , pluse width = 100usec , Duty = 0.2

^{*} Ic_pluse limited by max Tj

Package Marking and Ordering Information

Device Marking	Device	Package	Packaging Type	Qty per Tube	Max Qty per Box
FGA70N30T	FGA70N30TTU	TO-3P	Tube 30ea		-

Electrical Characteristics $T_C = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
Off Charac	teristics					
BV _{CES}	Collector-Emitter Breakdown Voltage	V _{GE} = 0V, I _C = 250uA	300			V
ΔB _{VCES} / ΔΤ _J	Temperature Coefficient of Breakdown Voltage	V _{GE} = 0V, I _C = 250uA		0.2		V/°C
I _{CES}	Collector Cut-Off Current	$V_{CE} = V_{CES}, V_{GE} = 0V$			250	uA
I _{GES}	G-E Leakage Current	$V_{GE} = V_{GES}, V_{CE} = 0V$			± 400	nA
On Charac	teristics					
V _{GE(th)}	G-E Threshold Voltage	$I_C = 250uA$, $V_{CE} = V_{GE}$	3.0	4.5	5.5	V
		I _C =20A, V _{GE} = 15V		1.2	1.5	V
V	Collector to Emitter	I _C =40A, V _{GE} = 15V		1.5		V
OL(Sat)	Saturation Voltage	I _C =70A, V _{GE} = 15V T _C = 25°C		1.8		V
		I _C = 70A, V _{GE} = 15V T _C = 125°C		1.9		V
	Characteristics				1	
C _{ies}	Input Capacitance	V _{CE} = 30V, V _{GE} = 0V		3000		pF
C _{oes}	Output Capacitance	f = 1MHz		160		pF
C _{res}	Reverse Transfer Capacitance			110		pF
Switching	Characteristics					
t _{d(on)}	Turn-On Delay Time	$V_{CC} = 200V, I_{C} = 40A$ $R_{G} = 15\Omega, V_{GE} = 15V$ Resistive Load, $T_{C} = 25^{\circ}C$		32		ns
t _r	Rise Time			90		ns
t _{d(off)}	Turn-Off Delay Time			175		ns
t _f	Fall Time	7		170	300	ns
t _{d(on)}	Turn-On Delay Time			30		ns
t _r	Rise Time	$V_{CC} = 200V, I_{C} = 40A$ $R_{G} = 15\Omega, V_{GE} = 15V$ Resistive Load, $T_{C} = 125^{\circ}C$		90		ns
t _{d(off)}	Turn-Off Delay Time			185		ns
t _f	Fall Time			235		ns
Q _g	Total Gate Charge			125		nC
Q _{ge}	Gate-Emitter Charge	$V_{CE} = 200V, I_{C} = 40A$ $V_{GE} = 15V$		25		nC
Q _{gc}	Gate-Collector Charge	- VGE - 10V		55		nC

Typical Performance Characteristics

Figure 1. Typical Output Characteristics

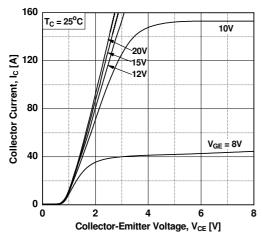


Figure 3. Typical Saturation Voltage Characteristics

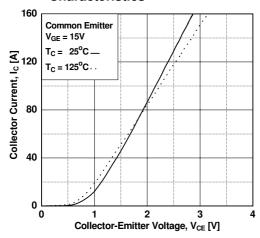
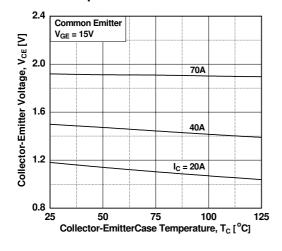



Figure 5. Saturation Voltage vs. Case
Temperature at Variant Current Level

Figure 2. Typical Output Characteristics

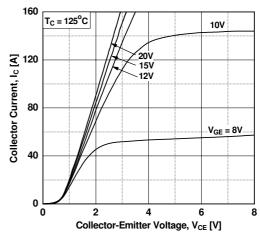


Figure 4. Transfer Characteristics

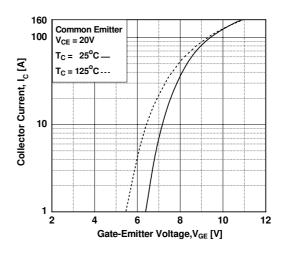
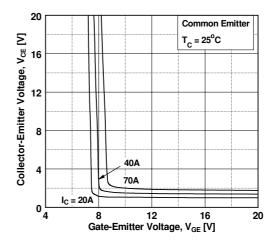



Figure 6. Saturation Voltage vs. V_{GE}

Typical Performance Characteristics (Continued)

Figure 7. Saturation Voltage vs. V_{GE}

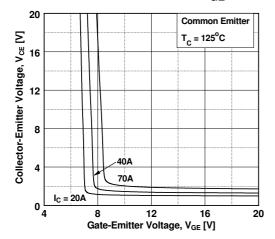


Figure 9. Gate Charge Characteristics

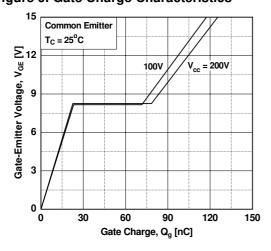


Figure 11. Turn-on Characteristics vs.
Gate Resistance

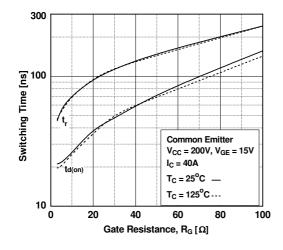


Figure 8. Capacitance Characteristics

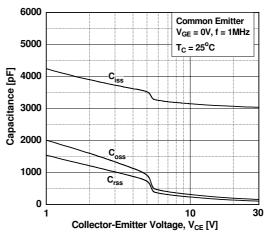


Figure 10. SOA Characteristics

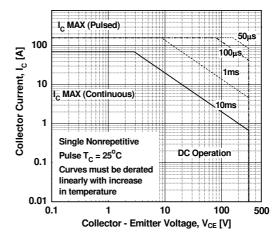
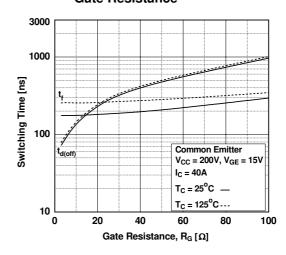



Figure 12. Turn-off Characteristics vs.
Gate Resistance

Typical Performance Characteristics (Continued)

Figure 13. Turn-on Characteristics vs. Collector Current

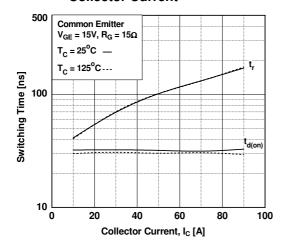


Figure 14. Turn-off Characteristics vs. Collector Current

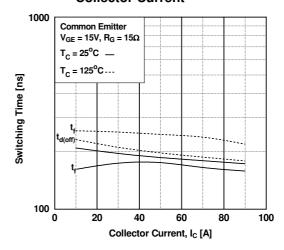


Figure 15. Switching Loss vs. Gate Resistance

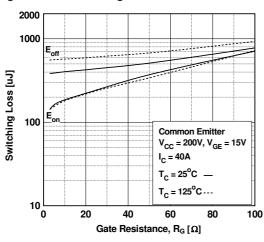


Figure 16. Switching Loss vs. Collector Current

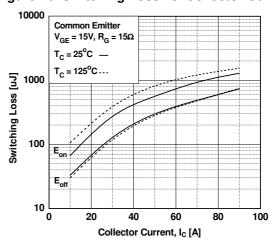
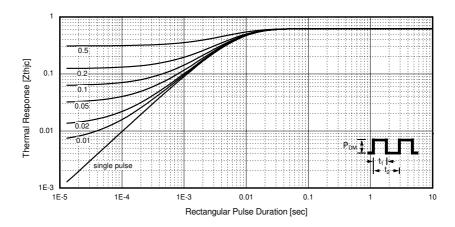
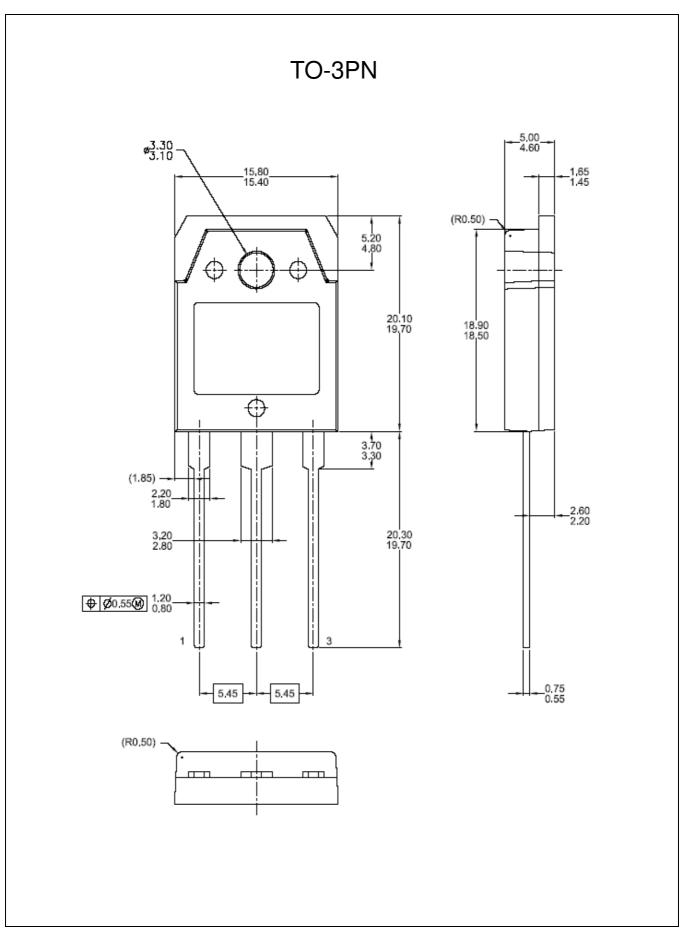




Figure 17. Transient Thermal Impedance of IGBT

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

	on addomand		
ACEx [®]	HiSeC™	PowerSaver™	TinyBoost™
Across the board. Around the world.™	i-Lo™	PowerTrench [¬]	TinyBuck™
ActiveArray™	ImpliedDisconnect™	Programmable Active Droop™	TinyLogic [®]
Bottomless™	IntelliMAX™	QFET [®]	TINYOPTO™
Build it Now™	ISOPLANAR™	QS™	TinyPower™
CoolFET™	MICROCOUPLER™	QT Optoelectronics™	TinyWire™
CROSSVOLT TM	MicroPak™	Quiet Series™	TruTranslation™
CTL™	MICROWIRE™	RapidConfigure™	μSerDes™
Current Transfer Logic™	Motion-SPM™	RapidConnect™	UHC [®]
DOME™	MSX™	ScalarPump™	UniFET™
E ² CMOS™	MSXPro™	SMART START™	VCX™
EcoSPARK [®]	OCXTM	SPM [®]	Wire™
EnSigna™	OCXPro™	STEALTH™	
FACT Quiet Series™	OPTOLOGIC [®]	SuperFET™	
FACT [®]	OPTOPLANAR [®]	SuperSOT™-3	
FAST [®]	PACMAN™	SuperSOT™-6	
FASTr™	PDP-SPM™	SuperSOT™-8	
FPS™	POP™	SyncFET™	
FRFET [®]	Power220 [®]	TCM™	
GlobalOptoisolator™	Power247 [®]	The Power Franchise [®]	
GTO,	PowerEdge,	U.™	

DISCLAIMEN
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

- 1. Life support devices or systems are devices or systems which, i. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.

7

Rev. I25