Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs. With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas. We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry! # Contact us Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China # FGA90N30 #### **Features** - · High Current Capability - Low saturation voltage: $V_{CE(sat)}$, Typ = 1.1V@ I_C = 20A - · High Input Impedance ## **Description** Employing Unified IGBT Technology, FGA90N30 provides low conduction and switching loss. FGA90N30 offers the optimum solution for PDP applications where low condution loss is essential. ## Absolute Maximum Ratings $T_C = 25^{\circ}C$ unless otherwise noted | Symbol | Description | | FGA90N30 | Units | |------------------|---|--------------------------|-------------|-------| | V _{CES} | Collector-Emitter Voltage | | 300 | V | | V _{GES} | Gate-Emitter Voltage | | ± 30 | V | | I _C | Collector Current | @ T _C = 25°C | 90 | A | | I _{CM} | Pulsed Collector Current (Note 1) | @ T _C = 25°C | 220 | Α | | P_{D} | Maximum Power Dissipation | @ T _C = 25°C | 219 | W | | | Maximum Power Dissipation | @ T _C = 100°C | 87 | W | | T _J | Operating Junction Temperature | | -55 to +150 | °C | | T _{stg} | Storage Temperature Range | | -55 to +150 | °C | | TL | Maximum Lead Temp. for soldering Purposes, 1/8" from case for 5 seconds | | 300 | °C | #### Notes (1) Repetitive test , pulse width = 100usec , Duty = 0.2 ### **Thermal Characteristics** | Symbol | Parameter | Тур. | Max. | Units | | |-----------------------|---|------|------|-------|--| | $R_{\theta JC}(IGBT)$ | Thermal Resistance, Junction-to-Case for IGBT | | 0.57 | °C/W | | | $R_{\theta JA}$ | Thermal Resistance, Junction-to-Ambient | | 40 | °C/W | | ^{*} Ic_pulse limited by max Tj # **Package Marking and Ordering Information** | Device Marking | Device | Package | Reel Size | Tape Width | Quantity | |-----------------------|----------|---------|-----------|------------|----------| | FGA90N30 | FGA90N30 | TO-3P | | | 30 | # Electrical Characteristics of the IGBT $T_C = 25$ °C unless otherwise noted | Symbol | Parameter | Test Conditions | Min. | Тур. | Max. | Units | |---------------------------------|--|--|----------|------|-------|----------| | Off Charac | teristics | | | | | | | BV _{CES} | Collector-Emitter Breakdown Voltage | $V_{GE} = 0V, I_{C} = 250\mu A$ | 300 | | | V | | $\Delta B_{VCES}/$ ΔT_J | Temperature Coefficient of Breakdown Voltage | V _{GE} = 0V, I _C = 250μA | | 0.6 | | V/°C | | I _{CES} | Collector Cut-Off Current | $V_{CE} = V_{CES}, V_{GE} = 0V$ | | | 100 | μА | | I _{GES} | G-E Leakage Current | $V_{GE} = V_{GES}, V_{CE} = 0V$ | | | ± 250 | nA | | On Charac | teristics | | | | | | | V _{GE(th)} | G-E Threshold Voltage | I _C = 250uA, V _{CE} = V _{GE} | 2.5 | 4.0 | 5.0 | V | | OL(III) | - | I _C = 20A, V _{GE} = 15V | | 1.1 | 1.4 | V | | | Calle stanta Fasition | I _C = 90A, V _{GE} = 15V | | 1.9 | | V | | OL(Sat) | Collector to Emitter
Saturation Voltage | I _C = 90A, V _{GE} = 15V,
T _C = 125°C | | 2.0 | | V | | Dynamic C | Characteristics | , | | | l | I | | C _{ies} | Input Capacitance | | | 1700 | _ | pF | | C _{oes} | Output Capacitance | $V_{CE} = 30V, V_{GE} = 0V,$ | | 290 | - | pF | | C _{res} | Reverse Transfer Capacitance | f = 1MHz | | 80 | - | pF | | Switching | Characteristics | | - | J | l | ! | | t _{d(on)} | Turn-On Delay Time | | | 30 | | ns | | t _r | Rise Time | | | 200 | | ns | | t _{d(off)} | Turn-Off Delay Time | V_{CC} = 200V, I_{C} = 20A,
R_{G} = 10 Ω , V_{GE} = 15V,
Resistive Load, T_{C} = 25°C | | 110 | | ns | | t _f | Fall Time | | | 140 | 300 | ns | | E _{on} | Turn-On Switching Loss | | | 0.15 | | mJ | | E _{off} | Turn-Off Switching Loss | | | 0.45 | | mJ | | E _{ts} | Total Switching Loss | | | 0.6 | | mJ | | t _{d(on)} | Turn-On Delay Time | | | 30 | | ns | | t _r | Rise Time | | | 210 | | ns | | t _{d(off)} | Turn-Off Delay Time | V_{CC} =200V, I_{C} = 20A,
R_{G} = 10 Ω , V_{GE} = 15V,
Resistive Load, T_{C} = 125°C | | 110 | | ns | | t _f | Fall Time | | | 200 | | ns | | E _{on} | Turn-On Switching Loss | | | 0.16 | | mJ | | E _{off} | Turn-Off Switching Loss | | | 0.72 | | mJ | | E _{ts} | Total Switching Loss | | | 0.88 | | mJ | | Q _g | Total Gate Charge | V _{CE} = 200V, I _C = 20A, | | 87 | 130 | nC | | Q _{ge} | Gate-Emitter Charge | V _{GE} = 15V | | 12 | 18 | nC | | Q _{gc} | Gate-Collector Charge | 7 | | 38 | 57 | nC | ## **Typical Performance Characteristics** Figure 1. Typical Output Characteristics Figure 2. Typical Output Characteristics Figure3. Typical Saturation Voltage Characteristics Figure 4. Transfer characteristics Figure 5. Saturation Voltage vs. Case Temperature at Variant Current Level Figure 6. Saturation Voltage vs. V_{GE} ## Typical Performance Characteristics (Continued) Figure 7. Saturation Voltage vs. V_{GE} Figure 8. Capacitance Charaacteristics Figure 9. Gate Charge Characteristics Figure 10. SOA Characteristics Figure 11. Turn-On Characteristics vs. Gate Resistance Figure 12. Turn-Off Characteristics vs. Gate Resistance ## Typical Performance Characteristics (Continued) Figure 13. Turn-On Characteristics vs. Collector Current Figure 14. Turn-Off Characteristics vs. Collector Current Figure 15. Switching Loss vs. Gate Resistance Figure 16.Switching Loss vs. Collector Current Figure 17. Turn-Off SOA Figure # Typical Performance Characteristics (Continued) Figure 18. Transient Thermal Impedance of IGBT # TO-3P #### **TRADEMARKS** The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks. $ACEx^{TM}$ FACT Quiet Series™ OCX™ SILENT SWITCHER® UniFET™ $\mathsf{UltraFET}^{\mathbb{R}}$ ActiveArray™ GlobalOptoisolator™ OCXPro™ SMART START™ OPTOLOGIC® GTO™ SPMTM VCX™ Bottomless™ Build it Now™ HiSeC™ OPTOPLANAR™ Stealth™ Wire™ CoolFET™ I²C™ PACMAN™ SuperFET™ РОР™ i-Lo™ CROSSVOLT™ SuperSOT™-3 $DOME^{TM}$ ImpliedDisconnect™ Power247™ SuperSOT™-6 EcoSPARK™ IntelliMAX™ PowerEdge™ SuperSOT™-8 E²CMOS™ ISOPLANAR™ SyncFET™ PowerSaver™ EnSigna™ LittleFET™ PowerTrench® ТСМ™ QFET® FACT™ MICROCOUPLER™ TinyBoost™ FAST[®] QS™ TinyBuck™ MicroFET™ FASTr™ MicroPak™ QT Optoelectronics™ TinyPWM™ FPS™ MICROWIRE™ Quiet Series™ TinyPower™ $\mathsf{TinyLogic}^{\mathbb{R}}$ FRFET™ MSX^{TM} RapidConfigure™ TINYOPTO™ MSXPro™ RapidConnect™ µSerDes™ TruTranslation™ Across the board. Around the world.™ UHC™ The Power Franchise® ScalarPump™ #### DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS. #### LIFE SUPPORT POLICY Programmable Active Droop™ FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. #### As used herein: - Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. - 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. # PRODUCT STATUS DEFINITIONS Definition of Terms | Datasheet Identification | Product Status | Definition | |--------------------------|---------------------------|---| | Advance Information | Formative or In
Design | This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. | | Preliminary | First Production | This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. | | No Identification Needed | Full Production | This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. | | Obsolete | Not In Production | This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only. |