imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

FGA90N33ATD 330V, 90A PDP Trench IGBT

Features

- High current capability
- Low saturation voltage: $V_{CE(sat)}$ =1.1V @ I_C = 20A
- High input impedance
- · Fast switching
- · RoHS compliant

Applications

PDP System

General Description

Using Novel Trench IGBT Technology, Fairchild's new series of trench IGBTs offer the optimum performance for PDP applications where low conduction and switching losses are essential.

Absolute Maximum Ratings

Symbol	Description		Ratings	Units	
V _{CES}	Collector to Emitter Voltage		330	V	
V _{GES}	Gate to Emitter Voltage		± 30	V	
I _C	Collector Current	@ T _C = 25°C	90	А	
I _{C pulse(1)}	Pulsed Collector Current	@ T _C = 25 ^o C	220	А	
I _{C pulse(2)}	Pulsed Collector Current	@ T _C = 25°C	330	А	
P _D	Maximum Power Dissipation	@ T _C = 25 ^o C	223	W	
	Maximum Power Dissipation	@ T _C = 100 ^o C	89	W	
TJ	Operating Junction Temperature		-55 to +150	°C	
T _{stg}	Storage Temperature Range		-55 to +150	°C	
Τ _L	Maximum Lead Temp. for soldering Purposes, 1/8" from case for 5 seconds		300	°C	

Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Units	
R _{0JC} (IGBT) Thermal Resistance, Junction to Case		-	0.56	°C/W	
$R_{\theta JC}$ (Diode)	$R_{\theta JC}(Diode)$ Thermal Resistance, Junction to Case		1.16	°C/W	
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	-	40	°C/W	

Notes:

(1) Repetitive test , Pulse width=100usec , Duty=0.1 (2) Half sine wave , D<0.01, Pulse width<5usec *I_C pluse limited by max Tj

August 2011

Device MarkingDevicePFGA90N33ATDFGA90N33ATDTU		Device	Pa	ackage	Packaging Type	Qty per Tube		Max Qty per Box	
		TO-3P	Tube	30ea		-			
Electric	al Chai	racteristics of t	he IQ	GBT T _c = 2	5°C unless otherwise noted				
Symbol	Parameter		Test Conditions		Min.	Тур.	Max.	Units	
Off Charac	teristics								
BV _{CES}		to Emitter Breakdown Vo	ltage	V _{GE} = 0V, I _C	s = 400µA	330	-	-	V
I _{CES}		Cut-Off Current		$V_{CE} = V_{CES}$		-	_	400	μA
I _{GES}		age Current		$V_{GE} = V_{GES}$		-	-	±400	nA
	1	-		02 020		1	1		1
On Charac						-	1		1
V _{GE(th)}	G-E Three	shold Voltage		I_{C} = 250 μ A, V_{CE} = V_{GE}		2.5	4.0	5.5	V
V _{CE(sat)}	Collector to Emitter Saturation Voltage		I _C = 20A, V _{GE} = 15V		-	1.1	1.4	V	
			I _C = 45A, V _{GE} = 15V,		-	1.3	-	V	
			I _C = 90A, V _{GE} = 15V,		-	1.6	-	V	
			$I_{C} = 90A, V_{GE} = 15V,$ $T_{C} = 125^{\circ}C$		-	1.7	-	V	
Dynamic C	haracteris	tics							
C _{ies}	Input Cap					-	2200	-	pF
C _{oes}		apacitance		$V_{CE} = 30V, V_{GE} = 0V,$		-	135	-	pF
C _{res}	-	verse Transfer Capacitance		f = 1MHz		-	100	-	pF
	1						1		1
Switching							1		1
t _{d(on)}		Delay Time		V _{CC} = 200V	lo = 20A	-	23	-	ns
t _r	Rise Time			R _G = 5Ω, V _C	_{BE} = 15V,	-	40	-	ns
t _{d(off)}		Delay Time		Resistive Load, $T_C = 25^{\circ}C$		-	100	-	ns
t _f	Fall Time	<u> </u>				-	180	240	ns
t _{d(on)}		Delay Time		V _{CC} = 200V	I _C = 20A.	-	20	-	ns
t _r	Rise Time			$R_{G} = 5\Omega, V_{GE} = 15V,$ Resistive Load, $T_{C} = 125^{\circ}C$		-	40	-	ns
t _{d(off)}		Delay Time				-	110	-	ns
t _f	Fall Time	Chargo				-	250	300	ns
Q _g Q _{ge}	Total Gate	mitter Charge		V _{CE} = 200V,	I _C = 20A,	-	95 12	-	nC
Vac.	Jale ID E			$V_{CE} = 200V, I_C = 20A,$ 		-	14	-	nC

Т
Q
N
g
ž
Ω
ω
AT
H
ы С
3301
9
,<
00
2
PDP
旦
-
Tre
Ō
2
Ϋ́
Ξ
G
Щ

Electrical Characteristics of the Diode T_C = 25°C unless otherwise noted Symbol **Test Conditions** Parameter Min. Max Units Тур. $T_C = 25^{\circ}C$ 1.1 1.5 -V V_{FM} Diode Forward Voltage I_F = 10A T_C = 125°C 0.96 -- $T_C = 25^{\circ}C$ -23 -Diode Reverse Recovery Time ns t_{rr} T_C = 125°C 36 --T_C = 25°C -2.8 - I_{F} =10A, dI/dt = 200A/µs I_{rr} Diode Peak Reverse Recovery А

T_C = 125°C

T_C = 25^oC

T_C = 125°C

-

-

-

5.1

32

91

-

-

_

nC

Current

Diode Reverse Recovery Charge

Q_{rr}

Typical Performance Characteristics

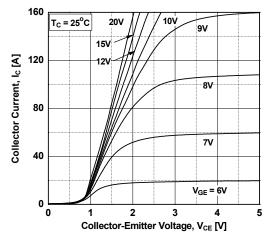


Figure 3. Typical Saturation Voltage Characteristics

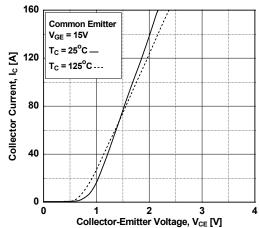
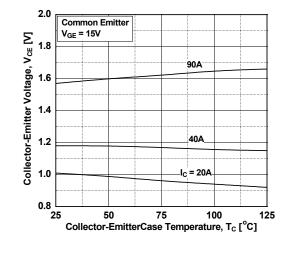
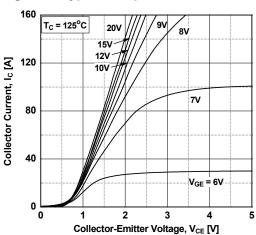
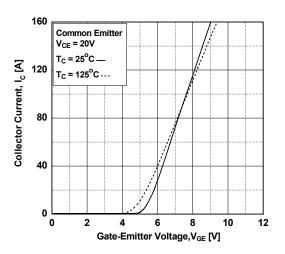


Figure 5. Saturation Voltage vs. Case Temperature at Variant Current Level

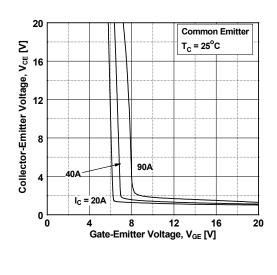

Figure 2. Typical Output Characteristics

Figure 4. Transfer Characteristics

Typical Performance Characteristics

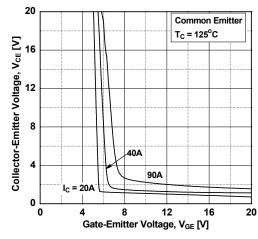
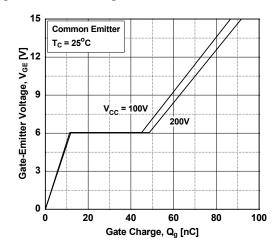



Figure 9. Gate charge Characteristics

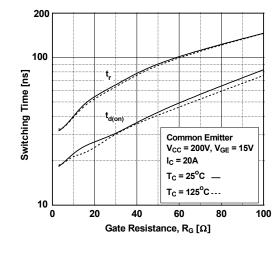


Figure 8. Capacitance Characteristics

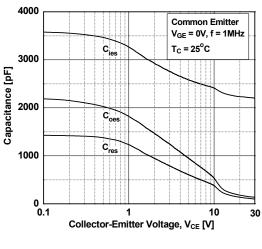


Figure 10. SOA Characteristics

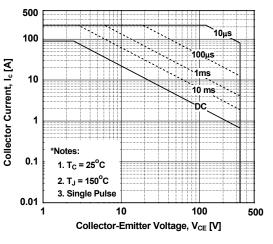
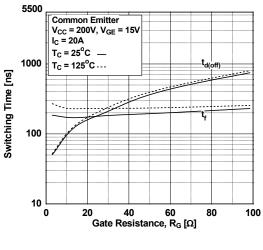
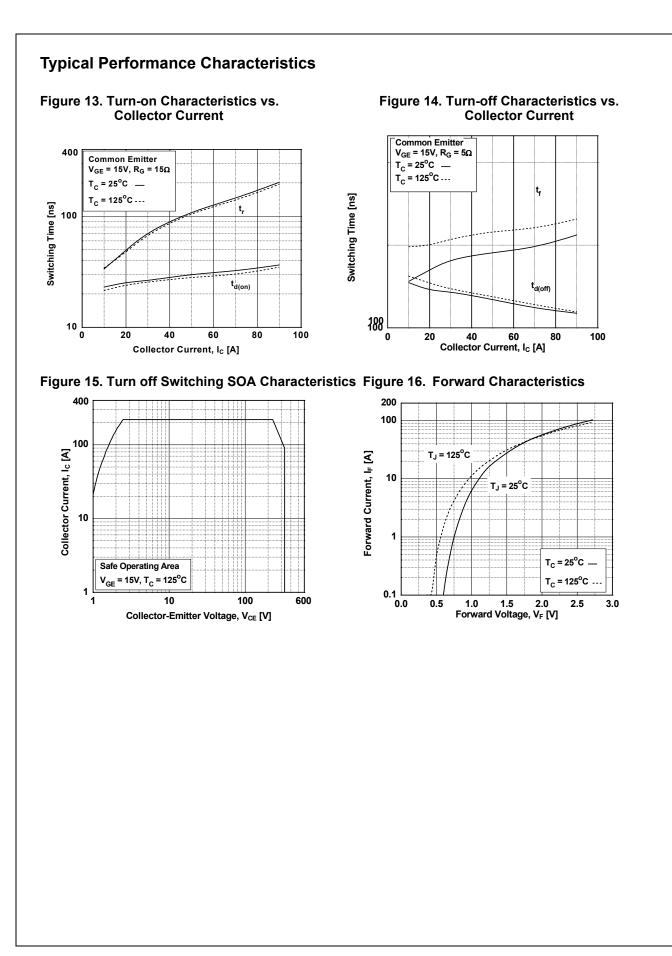




Figure 12. Turn-off Characteristics vs. Gate Resistance

Typical Performance Characteristics

Figure 17. Reverse Recovery Current

Figure 18. Stored Charge

200A/μs

20

Forward Current, I_F [A]

di/dt = 100A/µs

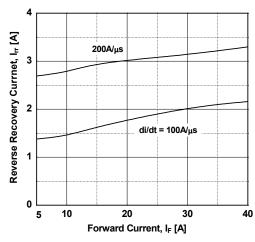
30

40

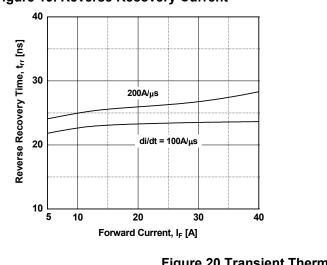
60

45

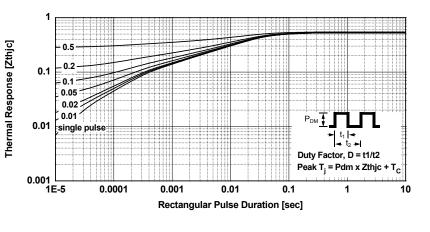
30


15

0


5

10


Stored Recovery Charge, Qrr [nC]

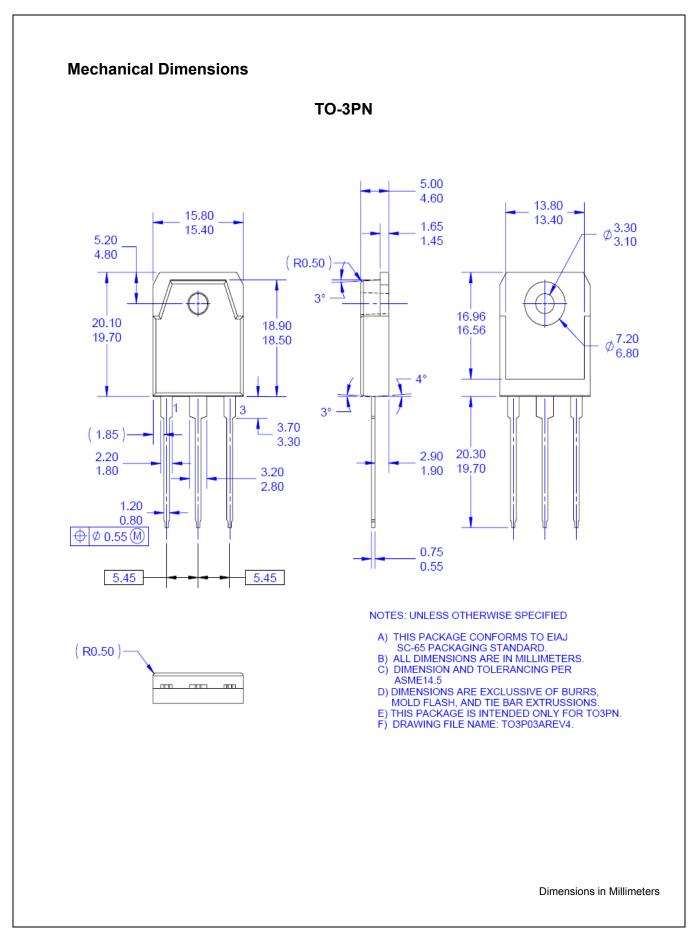


Figure 20.Transient Thermal Impedance of IGBT

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

2Cool™ AccuPower™ Auto-SPM™ AX-CAP™* BitSiC® Build it Now™ CorePLUS™ CorePOWER™ CROSSVOLT™ CTI ™ Current Transfer Logic™ DEUXPEED® Dual Cool™ **EcoSPARK**[®] EfficentMax™ **ESBC™** F

Fairchild Semiconductor®

FACT Quiet Series™ FACT[®]

F-PFS™ FRFET® Global Power ResourceSM Green FPS™ Green FPS™ e-Series™ Gmax™ GTO™ IntelliMAX[™] ISOPLANAR™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MicroPak2™ MillerDrive™ MotionMax™ Motion-SPM™ mWSaver™ OptiHiT™ **OPTOLOGIC[®]**

FlashWriter[®]*

FPS™

PDP SPM™ Power-SPM™ PowerTrench[®] PowerXS[™] Programmable Active Droop™ OFET QS™ Quiet Series™ RapidConfigure[™] тм Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™ SPM® STEALTH™ SuperFET[®] SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS®

The Right Technology for Your Success™ wer p franchise TinyBoost™

TinyBuck™ TinyCalc™ TinyLogic® TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC® TriFault Detect™ TRUECURRENT®* uSerDes™ SerDes

The Power Franchise[®]

UHC® Ultra FRFET™ UniFET™ VCX[™] VisualMax™ XS™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

OPTOPLANAR[®]

Ŕ

DISCLAIMER

Fairchild®

FAST®

FastvCore™

FETBench™

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHIED DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

SyncFET™

Sync-Lock™

GENERAL

SYSTEM ®*

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which (a) are 1. intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness

ANTI-COUNTERFEITING POLICY

Fairchild's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition		
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed Full Production		Datasheet contains final specifications. Fairchild Semiconductor reserves the right make changes at any time without notice to improve the design.		
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.		

www.fairchildsemi.com