

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

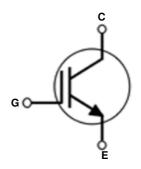
April 2008

FGA90N33AT 330V, 90A PDP Trench IGBT

Features

- · High current capability
- Low saturation voltage: $V_{CE(sat)} = 1.1V @ I_C = 20A$
- · High input impedance
- · Fast switching
- · RoHS compliant

Applications


PDP System

General Description

Using Novel Trench IGBT Technology, Fairchild's new series of trench IGBTs offer the optimum performance for PDP applications where low conduction and switching losses are essential.

Absolute Maximum Ratings

Symbol	Description		Ratings	Units
V _{CES}	Collector to Emitter Voltage		330	V
V _{GES}	Gate to Emitter Voltage		± 30	V
I _C	Collector Current	$@T_C = 25^{\circ}C$	90	А
I _{C pulse(1)}	Pulsed Collector Current	$@T_C = 25^{\circ}C$	220	А
I _{C pulse(2)}	Pulsed Collector Current	@ T _C = 25°C	330	А
P _D	Maximum Power Dissipation	$@ T_C = 25^{\circ}C$	223	W
ט י	Maximum Power Dissipation	$@ T_C = 100^{\circ}C$	89	W
T _J	Operating Junction Temperature		-55 to +150	°C
T _{stg}	Storage Temperature Range		-55 to +150	°C
TL	Maximum Lead Temp. for soldering Purposes, 1/8" from case for 5 seconds		300	°C

Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Units
$R_{\theta JC}(IGBT)$	Thermal Resistance, Junction to Case	-	0.56	°C/W
R ₀ JA Thermal Resistance, Junction to Ambient		-	40	°C/W

- (1) Repetitive test , Pulse width=100usec , Duty=0.1 (2) Half sine wave , D<0.01, Pulse width<5usec *I_C pluse limited by max Tj

Package Marking and Ordering Information

		Packaging		Max Qty	
Device Marking	Device	Package	Туре	Qty per Tube	per Box
FGA90N33AT	FGA90N33ATTU	TO-3P	Tube	30ea	-

Electrical Characteristics of the IGBT $T_C = 25$ °C unless otherwise noted

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
Off Charac	teristics					
BV _{CES}	Collector to Emitter Breakdown Voltage	$V_{GE} = 0V, I_{C} = 250 \mu A$	330	-	-	V
I _{CES}	Collector Cut-Off Current	$V_{CE} = V_{CES}, V_{GE} = 0V$	-	-	250	μА
I _{GES}	G-E Leakage Current	$V_{GE} = V_{GES}, V_{CE} = 0V$	-	-	±400	nA
On Charac	teristics					
V _{GE(th)}	G-E Threshold Voltage	$I_{C} = 250 \mu A, V_{CE} = V_{GE}$	2.5	4.0	5.5	V
	j i	I _C = 20A, V _{GE} = 15V	-	1.1	1.4	V
		I _C = 45A, V _{GE} = 15V,	-	1.3	-	V
V _{CE(sat)} Collector to Emitter Saturation Voltage	Collector to Emitter Saturation Voltage	I _C = 90A, V _{GE} = 15V, T _C = 25°C	-	1.6	-	٧
		I _C = 90A, V _{GE} = 15V, T _C = 125°C	-	1.7	-	V
Dynamic C	Characteristics					
C _{ies}	Input Capacitance		-	2200	-	pF
C _{oes}	Output Capacitance	$V_{CE} = 30V, V_{GE} = 0V,$ f = 1MHz	-	135	-	pF
C _{res}	Reverse Transfer Capacitance	- 1 = 11VII 12	-	100	-	pF
Switching	Characteristics					
t _{d(on)}	Turn-On Delay Time		-	23	-	ns
t _r	Rise Time	V_{CC} = 200V, I_{C} = 20A, R_{G} = 5 Ω , V_{GE} = 15V, Resistive Load, T_{C} = 25°C	-	40	-	ns
t _{d(off)}	Turn-Off Delay Time		-	100	-	ns
t _f	Fall Time		-	180	240	ns
t _{d(on)}	Turn-On Delay Time		-	20	-	ns
t _r	Rise Time	V_{CC} = 200V, I_{C} = 20A, R_{G} = 5 Ω , V_{GE} = 15V, Resistive Load, T_{C} = 125°C	-	40	-	ns
t _{d(off)}	Turn-Off Delay Time		-	110	-	ns
t _f	Fall Time		-	250	300	ns
Q _g	Total Gate Charge		-	95	-	nC
Q _{ge}	Gate to Emitter Charge	$V_{CE} = 200V, I_{C} = 20A,$ $V_{GE} = 15V$	-	12	-	nC
Q _{gc}	Gate to Collector Charge	7 *GE = 10 *	-	40	-	nC

Figure 1. Typical Output Characteristics

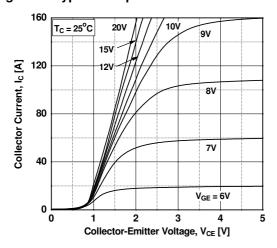


Figure 3. Typical Saturation Voltage Characteristics

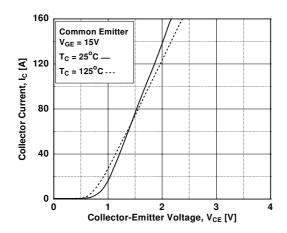


Figure 5. Saturation Voltage vs. Case
Temperature at Variant Current Level

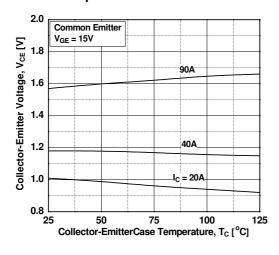


Figure 2. Typical Output Characteristics

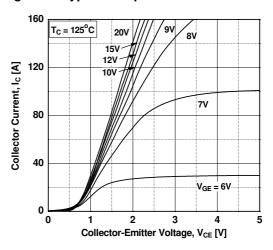


Figure 4. Transfer Characteristics

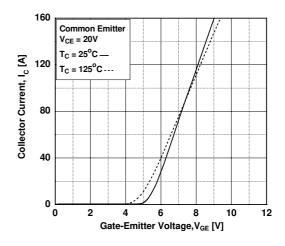


Figure 6. Saturation Voltage vs. V_{GE}

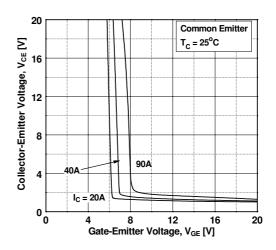


Figure 7. Saturation Voltage vs. V_{GE}

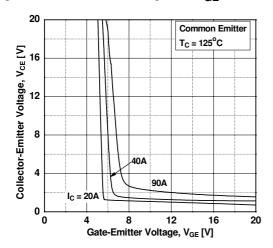


Figure 9. Gate charge Characteristics

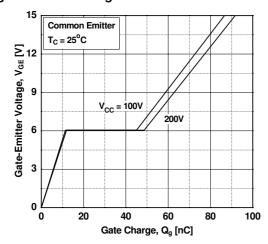


Figure 11. Turn-on Characteristics vs.
Gate Resistance

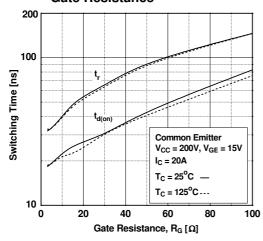


Figure 8. Capacitance Characteristics

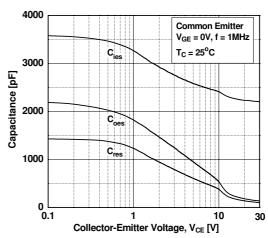


Figure 10. SOA Characteristics

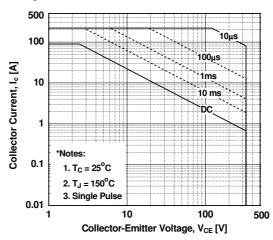


Figure 12. Turn-off Characteristics vs.
Gate Resistance

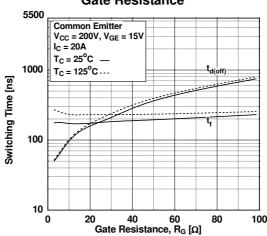


Figure 13. Turn-on Characteristics vs. Collector Current

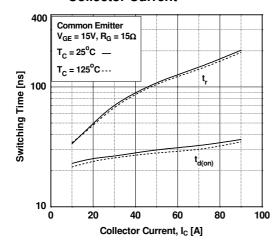


Figure 14. Turn-off Characteristics vs. Collector Current

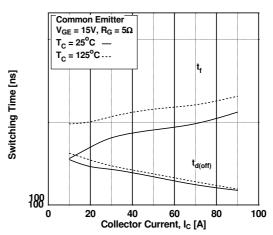
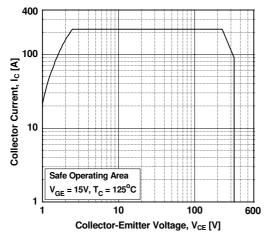
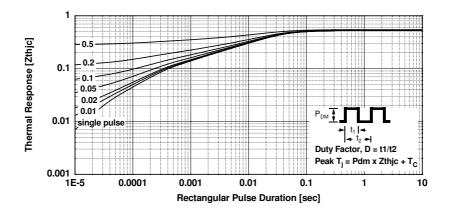
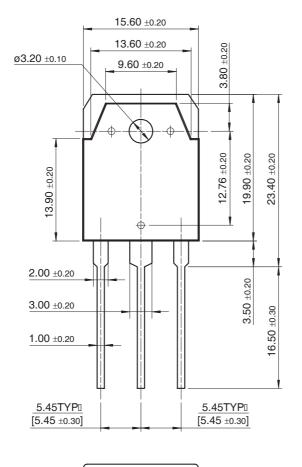
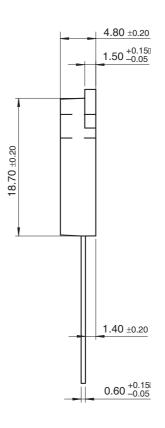


Figure 15. Turn off Switching SOA Characteristics


Figure 16.Transient Thermal Impedance of IGBT

Mechanical Dimensions

TO-3P

Dimensions in Millimeters

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidianries, and is not intended to be an exhaustive list of all such trademarks.

FPS™ PDP-SPM™ The Power Franchise® F-PFS™ Power-SPM™ Build it Now™ ⊎wer FRFET® CorePLUS™ PowerTrench® CorePOWER™ Global Power ResourceSM Programmable Active Droop™ TinyBoost™ CROSSVOLT™ Green FPS™ TinvBuck™ QFET[®] TinyLogic[®] CTL^{TM} Green FPS™ e-Series™ QSTM GTO™ TINYOPTO™ Current Transfer Logic™ Quiet Series™ EcoSPARK® IntelliMAX™ RapidConfigure™ TinyPower™ EfficentMax™ ISOPLANAR™ Saving our world 1mW at a time™ TinyPWM™ TinyWire™ EZSWITCH™ * MegaBuck™ SmartMax™ MICROCOUPLER™ SMART START™ μSerDes™ SPM[®] MicroFET™ MicroPak™ STEALTH™ airchild® UHC® MillerDrive™ SuperFET™ Fairchild Semiconductor® MotionMax™ SuperSOT™-3 Ultra FRFET™ FACT Quiet Series™ Motion-SPM™ SuperSOT™-6 UniFET™ FACT® VCX^{TM} OPTOLOGIC® SuperSOT™-8 FAST® SuperMOS™ OPTOPLANAR® VisualMax™ FastvCore™ SYSTEM ® FlashWriter® *

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which,

 (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	This datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. I3

^{*} EZSWITCH™ and FlashWriter® are trademarks of System General Corporation, used under license by Fairchild Semiconductor.