imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

March 2006

FGD2N40L 400V N-Channel Logic Level IGBT

FAIRCHILD

SEMICONDUCTOR®

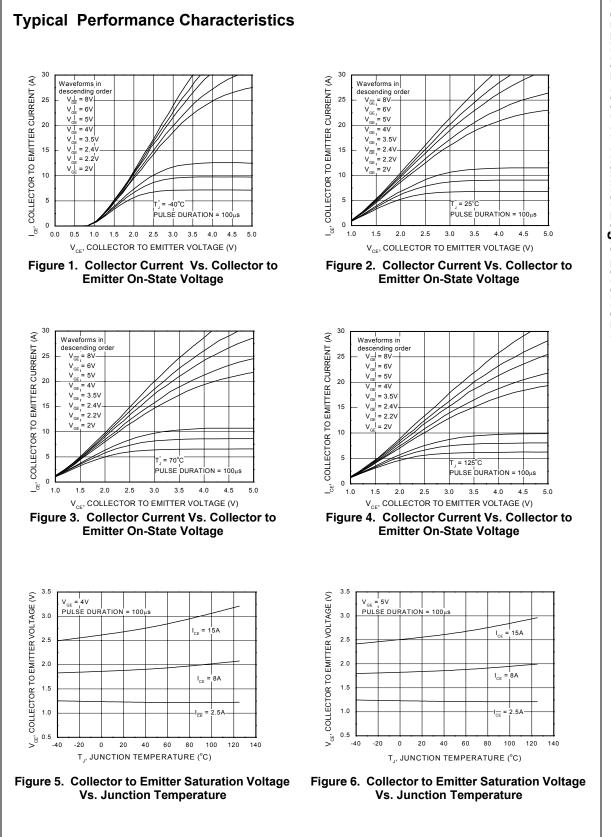
FGD2N40L 400V N-Channel Logic Level IGBT

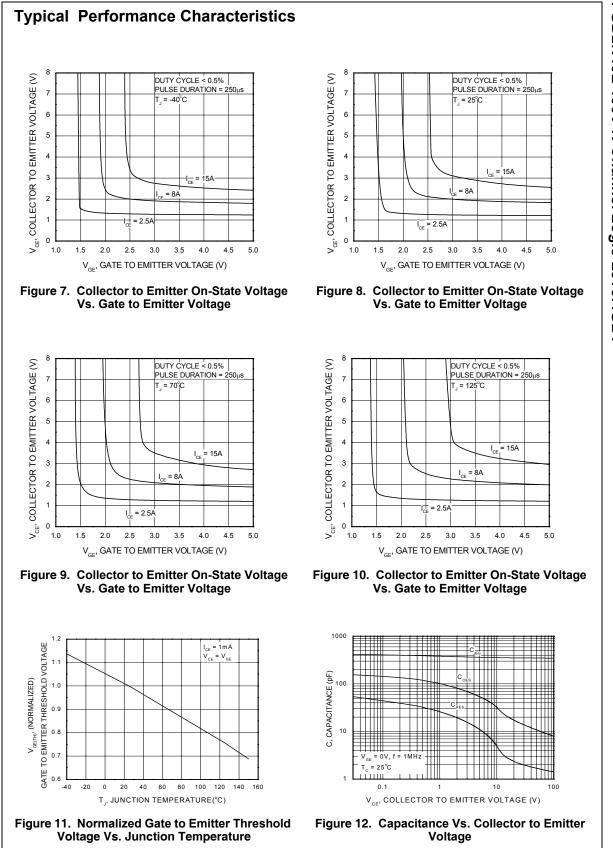
Features

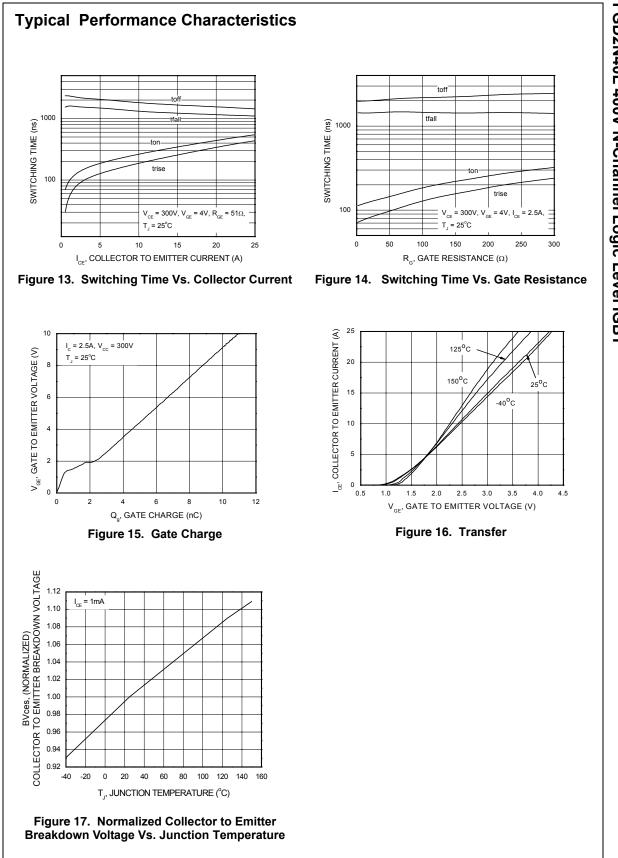
- V_{CE(SAT)} = 1.6V @ I_C = 2.5A, V_{GE} = 2.4V
- 6kV ESD Protected
- High Peak Current Density
- TO-252 (D-Pak)
- Low V_{GE(TH)}

Applications

Small Engine Ignition Applications


General Description


This N-Channel IGBT is a MOS gated, logic level device which has been especially tailored for small engine ignition applications. The gate is ESD protected with a zener diode.



Symbol		Parameter					Ratings		Units	
BV _{CES}	Collector to	Emitter Breakdown Voltage	9				400		V	
I _C	Collector C	urrent Continuous(DC)					7		Α	
I _{CP}	Collector C	Collector Current Pulsed(100µs)				29			Α	
V _{GES}	Gate to Em	hitter Voltage Continuous(DO	2)				±8		V	
V _{GEP}	Gate to Em	Gate to Emitter Voltage Pulsed				±10			V	
P _D	Power Dissipation Total $T_{\rm C}$ = 25°C						29		W	
TJ	Operating Junction Temperature Range					-40 to 150			°C	
T _{STG}	Storage Junction Temperature Range					-40 to 150			°C	
ESD	Electrostati	c Discharge Voltage at 100	oF, 1500Ω				6		kV	
Packag	e Markin	g and Ordering Ir	formation							
Device	Marking	Aarking Device Package			-	Tape Width			Quantity	
	D2N40	FGD2N40L	D-PAK	-		12mm / 16mm		2500		
Electric	al Chara	cteristics T _A = 25°C u	nless otherwise r	noted						
Symbol		Parameter	Test Co	nditions		Min	Тур	Max	Units	
Off Chara	acteristics								-	
BV _{CES}		Emitter Breakdown Voltage	e I _C = 1mA, V _{GE}	= 0V		400	-	-	V	
BV _{GES}	-	er Breakdown Voltage	I _{GES} = ±1mA			±10	-	-	V	
- · GE3			GL3							
				$T_{c} = +2$	5°C	-	-	10	μA	
I _{CES}	Collector to	Emitter leakage Current	V _{CE} = 320V	$T_{C} = +2$ $T_{C} = +1$	5°C 25°C	-	-	10 250	μA μA	
{GES} Dn Chara	Gate-Emitte	er Leakage Current	$V{CE} = 320V$ $V_{GE} = \pm 8$			-	-	250 ±10	μΑ μΑ	
I _{GES} On Chara V _{CE(SAT)}	Gate-Emitte acteristics Collector to	er Leakage Current					- - - 1.3	250	μA	
I _{GES} On Chara V _{CE(SAT)} Dynamic	Gate-Emitte	er Leakage Current Emitter Saturation Voltage	$V_{GE} = \pm 8$ $I_{C} = 2.5A, V_{GE}$ $I_{C} = 2.5A, V_{CE}$	= 2.4V(N		-	-	250 ±10	μA μA	
I _{GES} Dn Chara V _{CE(SAT)} Dynamic Q _{G(ON)}	Gate-Emitte acteristics Collector to Character Gate Charg	er Leakage Current Emitter Saturation Voltage	$V_{GE} = \pm 8$ $I_C = 2.5A, V_{GE}$ $I_C = 2.5A, V_{CE}$ $V_{GE} = 10V$	_E = 2.4V(N E = 300V,		-	-	250 ±10	μΑ μΑ V	
I _{GES} Dn Chara V _{CE(SAT)} Dynamic Q _{G(ON)} V _{GEP}	Gate-Emitte acteristics Collector to Character Gate Charge Gate to Em	er Leakage Current Emitter Saturation Voltage istics	$V_{GE} = \pm 8$ $I_C = 2.5A, V_{GE}$ $I_C = 2.5A, V_{CE}$ $V_{GE} = 10V$ $I_C = 2.5A, V_{CE}$	E = 2.4 V(N) E = 300 V, E = 300 V		-	- 1.3 11	250 ±10	μΑ μΑ V	
I_{GES} On Chara $V_{CE(SAT)}$ Dynamic $Q_{G(ON)}$ V_{GEP} $V_{GE(TH)}$	Gate-Emitte acteristics Collector to Character Gate Charge Gate to Em	er Leakage Current Emitter Saturation Voltage istics ge itter Plateau Voltage itter Threshold Voltage	$V_{GE} = \pm 8$ $I_C = 2.5A, V_{GE}$ $I_C = 2.5A, V_{CE}$ $V_{GE} = 10V$	= 2.4V(N = 300V, = 300V CE = V _{GE}			- 1.3 11 1.8	250 ±10 1.6 - -	μΑ μΑ V nC	
I_{GES} Dn Chara $V_{CE(SAT)}$ Dynamic $Q_{G(ON)}$ V_{GEP} $V_{GE(TH)}$ C_{IES}	Gate-Emitte Collector to Character Gate Charg Gate to Em Gate to Em Input Capa	er Leakage Current Emitter Saturation Voltage istics ge itter Plateau Voltage itter Threshold Voltage	$V_{GE} = \pm 8$ $I_{C} = 2.5A, V_{GE}$ $I_{C} = 2.5A, V_{CE}$ $V_{GE} = 10V$ $I_{C} = 2.5A, V_{CE}$ $I_{C} = 1.0mA, V_{CE}$ $V_{CE} = 10V, V_{CE}$	= 2.4V(N = 300V, = 300V CE = V _{GE}		- - - - - - 0.70	- 1.3 11 1.8 0.85	250 ±10 1.6 - -	μΑ μΑ V nC V V	
IGES Dn Chara V _{CE(SAT)} Dynamic Q _{G(ON)} V _{GEP} V _{GE(TH)} C _{IES} R _G	Gate-Emitte Collector to Character Gate Charg Gate to Em Gate to Em Input Capa Internal Ga	er Leakage Current Emitter Saturation Voltage istics je itter Plateau Voltage itter Threshold Voltage citance te Series Resistance	$V_{GE} = \pm 8$ $I_{C} = 2.5A, V_{GE}$ $I_{C} = 2.5A, V_{CE}$ $V_{GE} = 10V$ $I_{C} = 2.5A, V_{CE}$ $I_{C} = 1.0mA, V_{CE}$ $V_{CE} = 10V, V_{CE}$	= 2.4V(N = 300V, = 300V CE = V _{GE}		- - - - - - 0.70	- 1.3 11 1.8 0.85 357	250 ±10 1.6 - -	μΑ μΑ V nC V V pF	
I _{GES} Dn Chara V _{CE(SAT)} Dynamic Q _{G(ON)} V _{GEP} V _{GE(TH)} C _{IES} R _G Switching	Gate-Emitte Collector to Character Gate Charg Gate to Em Gate to Em Input Capa Internal Ga	er Leakage Current Emitter Saturation Voltage istics ge itter Plateau Voltage itter Threshold Voltage citance te Series Resistance eristics	$V_{GE} = \pm 8$ $I_{C} = 2.5A, V_{GE}$ $I_{C} = 2.5A, V_{CE}$ $V_{GE} = 10V$ $I_{C} = 2.5A, V_{CE}$ $I_{C} = 1.0MA, V_{CE}$ $I_{C} = 1.0MA, V_{CE}$ $I_{C} = 10V, V_{CE}$	= 2.4V(N) = 300V, = 300V = 300V $= V_{GE}$ $= V_{GE}$		- - - - - - 0.70	- 1.3 11 1.8 0.85 357 300	250 ±10 1.6 - -	μA μA V nC V V pF ohms	
I_{GES} Dn Chara $V_{CE(SAT)}$ Dynamic $Q_{G(ON)}$ V_{GEP} $V_{GE(TH)}$ C_{IES} R_{G} Switching	Gate-Emitte Collector to Collector to Gate Charge Gate to Em Gate to Em Input Capa Internal Ga Characte Turn-On Ti	er Leakage Current Emitter Saturation Voltage istics ge itter Plateau Voltage itter Threshold Voltage citance te Series Resistance eristics me	$V_{GE} = \pm 8$ $I_{C} = 2.5A, V_{GE}$ $I_{C} = 2.5A, V_{CE}$ $V_{GE} = 10V$ $I_{C} = 2.5A, V_{CE}$ $I_{C} = 1.0MA, V_{CE}$ $I_{C} = 1.0MA, V_{CE}$ $V_{CE} = 10V, V_{CE}$ $I_{C} = 10V, V_{CE}$	= 2.4V(N) = 300V, = 300V = 300V = 0V, = 0V, = 0V, = 2.5A,		- - - - 0.70 -	- 1.3 11 1.8 0.85 357 300 0.142	250 ±10 1.6 - 1.2 -	μΑ μΑ V V ν pF ohm	
I_{GES} Dn Chara $V_{CE(SAT)}$ Dynamic $Q_{G(ON)}$ V_{GEP} $V_{GE(TH)}$ C_{IES} R_{G} Switching t_{ON} $t_{d(ON)I}$	Gate-Emitte Collector to Character Gate Charg Gate to Em Gate to Em Input Capa Internal Ga Characte Turn-On Tin Current Tur	er Leakage Current Emitter Saturation Voltage istics ge itter Plateau Voltage itter Threshold Voltage citance te Series Resistance eristics me m-On Delay Time	$V_{GE} = \pm 8$ $I_{C} = 2.5A, V_{GE}$ $I_{C} = 2.5A, V_{CE}$ $V_{GE} = 10V$ $I_{C} = 2.5A, V_{CE}$ $I_{C} = 1.0MA, V_{CE}$ $I_{C} = 1.0MA, V_{CE}$ $I_{C} = 10V, V_{CE}$	= 2.4V(N) = 300V, = 300V = 300V = 0V, = 0V, = 2.5A, $= 120\Omega,$		- - - - 0.70 - -	- 1.3 11 1.8 0.85 357 300 0.142 0.047	250 ±10 1.6 - 1.2 - -	μΑ μΑ ν ν ν μβ	
I_{GES} Dn Chara $V_{CE(SAT)}$ Dynamic $Q_{G(ON)}$ V_{GEP} $V_{GE(TH)}$ C_{IES} R_{G} Switching t_{ON} $t_{al(ON)I}$	Gate-Emitte Collector to Character Gate Charg Gate to Em Gate to Em Input Capa Internal Ga Characte Turn-On Tin Current Tur	er Leakage Current Emitter Saturation Voltage istics ge itter Plateau Voltage itter Threshold Voltage citance te Series Resistance eristics me m-On Delay Time re Time	$V_{GE} = \pm 8$ $I_{C} = 2.5A, V_{GE}$ $I_{C} = 2.5A, V_{CE}$ $V_{GE} = 10V$ $I_{C} = 2.5A, V_{CE}$ $I_{C} = 1.0mA, V_{CE}$ $V_{CE} = 10V, V_{CE}$ $f = 1MHz$ $V_{CC} = 300V, I_{C}$ $V_{GE} = 4V, R_{L} = 0$	= 2.4V(N) = 300V, = 300V = 300V = 0V, = 0V, = 2.5A, $= 120\Omega,$		- - - - - 0.70 - - - -	- 1.3 11 1.8 0.85 357 300 0.142 0.047 0.095	250 ±10 1.6 - 1.2 - - -	μΑ μΑ V V V pF ohm μs μs	
I_{GES} Dn Chara $V_{CE(SAT)}$ Dynamic $Q_{G(ON)}$ V_{GEP} $V_{GE(TH)}$ C_{IES} R_{G} Switching t_{ON} $t_{d(ON)I}$ t_{rI} t_{OFF}	Gate-Emitte Gate-Emitte Collector to Character Gate Charg Gate to Em Gate to Em Gate to Em Input Capa Internal Ga Unternal Ga Characte Turn-On Tin Current Tur Current Ris Turn-Off Tir	er Leakage Current Emitter Saturation Voltage istics ge itter Plateau Voltage itter Threshold Voltage citance te Series Resistance eristics me m-On Delay Time ie Time me	$V_{GE} = \pm 8$ $I_{C} = 2.5A, V_{GE}$ $I_{C} = 2.5A, V_{CE}$ $V_{GE} = 10V$ $I_{C} = 2.5A, V_{CE}$ $I_{C} = 1.0mA, V_{CE}$ $V_{CE} = 10V, V_{CE}$ $f = 1MHz$ $V_{CC} = 300V, I_{C}$ $V_{GE} = 4V, R_{L} = 0$	= 2.4V(N) = 300V, = 300V = 300V = 0V, = 0V, = 2.5A, $= 120\Omega,$		- - - - - 0.70 - - - - - -	- 1.3 11 1.8 0.85 357 300 0.142 0.047 0.095 2.152	250 ±10 1.6 - 1.2 - - - - - - -	μΑ μΑ ν ν ν ν ν ν μs μs μs μs	
I_{GES} Dn Chara $V_{CE(SAT)}$ Dynamic $Q_{G(ON)}$ V_{GEP} $V_{GE(TH)}$ C_{IES} R_{G} Switching t_{on} t_{ofF} $t_{d(OFF)I}$	Gate-Emitte Gate-Emitte Collector to Character Gate Charg Gate to Em Gate to Em Input Capa Internal Ga Unternal Ga Character Current Tur Current Tur Current Tur	er Leakage Current Emitter Saturation Voltage istics je itter Plateau Voltage itter Threshold Voltage citance te Series Resistance eristics me in-On Delay Time ie Time me in-Off Delay Time	$V_{GE} = \pm 8$ $I_{C} = 2.5A, V_{GE}$ $I_{C} = 2.5A, V_{CE}$ $V_{GE} = 10V$ $I_{C} = 2.5A, V_{CE}$ $I_{C} = 1.0mA, V_{CE}$ $V_{CE} = 10V, V_{CE}$ $f = 1MHz$ $V_{CC} = 300V, I_{C}$ $V_{GE} = 4V, R_{L} = 0$	= 2.4V(N) = 300V, = 300V = 300V = 0V, = 0V, = 2.5A, $= 120\Omega,$		- - - - - - - - - - - - - - - - -	- 1.3 11 1.8 0.85 357 300 0.142 0.047 0.095 2.152 0.650	250 ±10 1.6 - 1.2 - - - - - - - - - -	μΑ μΑ ν ν ν ν ν ν μs μs μs μs μs	
I_{GES} $V_{CE(SAT)}$ $Dynamic$ $Q_{G(ON)}$ V_{GEP} $V_{GE(TH)}$ C_{IES} R_{G} $Switching$ t_{ON} t_{rl} t_{OFF} $t_{d(OFF)l}$ t_{rl}	Gate-Emitte Collector to Character Gate Charg Gate to Em Gate to Em Input Capa Internal Ga Character Turn-On Tir Current Tur Current Ris Turn-Off Tir Current Tur Current Tur	er Leakage Current Emitter Saturation Voltage istics ge itter Plateau Voltage itter Threshold Voltage citance te Series Resistance eristics me n-On Delay Time te Time me n-Off Delay Time I Time	$V_{GE} = \pm 8$ $I_{C} = 2.5A, V_{GE}$ $I_{C} = 2.5A, V_{CE}$ $V_{GE} = 10V$ $I_{C} = 2.5A, V_{CE}$ $I_{C} = 1.0mA, V_{CE}$ $V_{CE} = 10V, V_{CE}$ $f = 1MHz$ $V_{CC} = 300V, I_{C}$ $V_{GE} = 4V, R_{L} = 0$	= 2.4V(N) = 300V, = 300V = 300V = 0V, = 0V, = 2.5A, $= 120\Omega,$		- - - - - - - - - - - - - -	- 1.3 11 1.8 0.85 357 300 0.142 0.047 0.095 2.152	250 ±10 1.6 - 1.2 - - - - - - - -	μΑ μΑ V V V V pF ohm: μs μs μs	
$\frac{V_{CE(SAT)}}{Q_{G(ON)}}$ $\frac{V_{GEP}}{V_{GE(TH)}}$ C_{IES} $\frac{R_{G}}{Switching}$ $\frac{t_{ON}}{t_{rl}}$ $\frac{t_{d(ON)l}}{t_{rl}}$ $\frac{t_{OFF}}{t_{d(OFF)l}}$	Gate-Emitte Gate-Emitte Collector to Character Gate Charg Gate to Em Gate to Em Input Capa Internal Ga Unternal Ga Character Current Tur Current Tur Current Tur	er Leakage Current Emitter Saturation Voltage istics ge itter Plateau Voltage itter Threshold Voltage citance te Series Resistance eristics me n-On Delay Time te Time me n-Off Delay Time I Time	$V_{GE} = \pm 8$ $I_{C} = 2.5A, V_{GE}$ $V_{GE} = 10V$ $I_{C} = 2.5A, V_{CE}$ $V_{CE} = 10V, V_{C}$ $I_{C} = 1.0mA, V_{C}$ $V_{CE} = 10V, V_{C}$ $f = 1MHz$ $V_{CC} = 300V, I_{C}$ $V_{GE} = 4V, R_{L} = R_{G} = 51\Omega, T_{J} = 100$	= 2.4V(N) = 300V, = 300V = 300V = 0V, = 0V, = 2.5A, $= 120\Omega,$		- - - - - - - - - - - - - - - - -	- 1.3 11 1.8 0.85 357 300 0.142 0.047 0.095 2.152 0.650	250 ±10 1.6 - 1.2 - - - - - - - - - -	μΑ μΑ ν ν ν ν ν ν μs μs μs μs μs	

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	FAST [®]	ISOPLANAR™	PowerSaver™	SuperSOT™-6
ActiveArray™	FASTr™	LittleFET™	PowerTrench [®]	SuperSOT™-8
Bottomless™	FPS™	MICROCOUPLER™	QFET [®]	SyncFET™
Build it Now™	FRFET™	MicroFET™	QS™	TCM™
CoolFET™	GlobalOptoisolator™	MicroPak™	QT Optoelectronics™	TinyLogic [®]
CROSSVOLT™	GTO™	MICROWIRE™	Quiet Series™	TINYOPTO™
DOME™	HiSeC™	MSX™	RapidConfigure™	TruTranslation™
EcoSPARK™	I ² C™	MSXPro™	RapidConnect™	UHC™
E ² CMOS™	<i>i-Lo</i> ™	OCX™	µSerDes™	UltraFET®
EnSigna™	ImpliedDisconnect [™]	OCXPro™	ScalarPump™	UniFET™
FACT™	IntelliMAX™	OPTOLOGIC [®]	SILENT	VCX™
FACT Quiet Series™		OPTOPLANAR™	SWITCHER®	Wire™
		PACMAN™	SMART START™	
Aaraaa tha baard Ara	und the world TM	POP™	SPM™	
Across the board. Around the world.™		Power247™	Stealth™	
The Power Franchise [®] Programmable Active Droop™		PowerEdge™	SuperFET™	
Frogrammable Active			SuperSOT™-3	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

PRODUCT STATUS DEFINITIONS Definition of Terms

www.fairchildsemi.com