imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

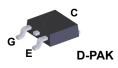
Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconduc

Features


- FS Trench Technology, Positive Temperature Coefficient
- High Speed Switching
- Low Saturation Voltage: V_{CE(sat)} =2.9 V @ I_C = 5 A
- 100% of the Parts tested for $I_{IM}(1)$
- · High Input Impedance
- RoHS Compliant

Applications

- · Inrush current limitation
- Lighting
- · Home appliances

General Description

Using novel field stop IGBT technology, Fairchild's new series of field stop 3rd generation IGBTs offer the optimum performance for inrush current limitation, lighting and home appliance applications.

Absolute Maximum Ratings T_C = 25°C unless otherwise noted

Symbol	Description		FGD5T120SH	Unit
V _{CES}	Collector to Emitter Voltage		1200	V
V _{GES}	Gate to Emitter Voltage		±25	V
V GES	Transient Gate to Emitter Voltage		±30	V
	Collector Current	@ T _C = 25°C	10	A
I _C	Collector Current	@ T _C = 100 ^o C	5	А
I _{LM} (1)	Clamped Inductive Load Current	@ T _C = 25°C	12.5	A
I _{CM} (2)	Pulsed Collector Current		12.5	А
P_	Maximum Power Dissipation	@ T _C = 25°C	69	W
P _D	Maximum Power Dissipation	@ T _C = 100 ^o C	28	W
TJ	Operating Junction Temperature		-55 to +150	°C
T _{stg}	Storage Temperature Range		-55 to +150	°C
TL	Maximum Lead Temp. for soldering Purposes, 1/8" from case for 5 second	ds	300	°C

Notes: 1. Vcc = 600 V,V_{GE} = 15 V, I_C = 12.5 A, R_G = 50 Ω . Inductive Load 2. Limited by Tjmax

November 2015

	FGD51120SH
	- 1200 V, 5 A F
-	V, 5 A FS Trench IGBT
-	

Thermal Characteristics

Symbol	Parameter	FGD5T120SH	Unit
$R_{ extsf{ heta}JC}$ (IGBT)	Thermal Resistance, Junction to Case, Max.	1.8	°C/W
$R_{ extsf{ heta}JA}$	Thermal Resistance, Junction to Ambient, Max. (3)	50	°C/W

Notes: 3. Mounted on 1" squre PCB (FR4 or G-10 material)

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Qty per Tube
FGD5T120SH	FGD5T120SH	TO-252 A03	380 mm	16 mm	2500

Electrical Characteristics of the IGBT $T_{C} = 25^{\circ}C$ unless otherwise noted

	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Off Charac	teristics		·			
BV _{CES}	Collector to Emitter Breakdown Voltage	V_{GE} = 0 V, I _C = 250 uA	1200	-	-	V
$\Delta \text{BV}_{\text{CES}}$ / $\Delta \text{T}_{\text{J}}$	Temperature Coefficient of Breakdown Voltage	V _{GE} = 0 V, I _C = 250 uA	-	1.2	-	V/ºC
I _{CES}	Collector Cut-Off Current	$V_{CE} = V_{CES}, V_{GE} = 0 V$	-	-	250	μA
I _{GES}	G-E Leakage Current	$V_{GE} = V_{GES}, V_{CE} = 0 V$	-	-	± 400	nA
On Charac	teristics					
V _{GE(th)}	G-E Threshold Voltage	I_{C} = 5 mA, V_{CE} = V_{GE}	2.5	3.5	4.5	V
		I _C = 5 A, V _{GE} = 15 V	-	2.9	3.6	V
V _{CE(sat)}	Collector to Emitter Saturation Voltage	$I_{C} = 5 \text{ A}, V_{GE} = 15 \text{ V},$ $T_{C} = 150^{\circ}\text{C}$	-	4.5	-	V
Dynamic C	haracteristics					
C _{ies}	Input Capacitance		-	209	-	pF
C _{oes}	Output Capacitance	V _{CE} = 30 V, V _{GE} = 0 V, f = 1 MHz	-	11	-	pF
C _{res}	Reverse Transfer Capacitance		-	2	-	pF
• • • •						
0	Characteristics					
T _{d(on)}	Turn-On Delay Time		-	4.8	-	ns
T _{d(on)} T _r	Turn-On Delay Time Rise Time		-	20.8	-	ns
T _{d(on)} T _r T _{d(off)}	Turn-On Delay Time Rise Time Turn-Off Delay Time	$V_{CC} = 600 \text{ V}, \text{ I}_{C} = 5 \text{ A},$	-	20.8 24.8	-	ns ns
T _{d(on)} T _r T _{d(off)} T _f	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time	$V_{CC} = 600 \text{ V}, \text{ I}_{C} = 5 \text{ A},$ $R_{G} = 30 \Omega, V_{GE} = 15 \text{ V},$ Inductive Load, $T_{C} = 25^{\circ}\text{C}$	-	20.8 24.8 104		ns ns ns
T _{d(on)} T _r T _{d(off)} T _f E _{on}	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss	R _G = 30 Ω, V _{GE} = 15 V,	-	20.8 24.8 104 247		ns ns ns uJ
$ T_{d(on)} $ $ T_r $ $ T_{d(off)} $ $ T_f $ $ E_{on} $ $ E_{off} $	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss	R _G = 30 Ω, V _{GE} = 15 V,	-	20.8 24.8 104 247 94		ns ns ns uJ uJ
T _{d(on)} T _r T _{d(off)} T _f E _{on} E _{ts}	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss	R _G = 30 Ω, V _{GE} = 15 V,	- - - -	20.8 24.8 104 247 94 341	- - - - -	ns ns ns uJ uJ uJ
T _{d(on)} T _r T _{d(off)} T _f E _{on} E _{off} E _{ts} T _{d(on)}	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Total Switching Loss Turn-On Delay Time	R _G = 30 Ω, V _{GE} = 15 V,	- - - - - -	20.8 24.8 104 247 94 341 4.8		ns ns uJ uJ uJ ns
T _{d(on)} T _r T _{d(off)} T _f E _{on} E _{off} E _{ts} T _{d(on)} T _{d(on)} T _r	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time	$R_G = 30 \Omega$, $V_{GE} = 15 V$, Inductive Load, $T_C = 25^{\circ}C$	- - - - - -	20.8 24.8 104 247 94 341 4.8 40	- - - - -	ns ns uJ uJ uJ ns ns
T _{d(on)} T _r T _{d(off)} T _f E _{on} E _{off} E _{ts} T _{d(on)} T _r T _{d(off)}	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time	$R_{G} = 30 \Omega, V_{GE} = 15 V,$ Inductive Load, $T_{C} = 25^{\circ}C$ $V_{CC} = 600 V, I_{C} = 5 A,$ $R_{G} = 30 \Omega, V_{GE} = 15 V,$	- - - - - - - -	20.8 24.8 104 247 94 341 4.8 40 25.6		ns ns uJ uJ uJ ns ns ns
T _{d(on)} T _r T _{d(off)} T _f E _{on} E _{off} E _{ts} T _{d(on)} T _r T _{d(off)} T _f T _{d(off)} T _f	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time	$R_G = 30 \Omega$, $V_{GE} = 15 V$, Inductive Load, $T_C = 25^{\circ}C$	- - - - - -	20.8 24.8 104 247 94 341 4.8 40 25.6 134		ns ns uJ uJ uJ ns ns ns ns
T _{d(on)} T _r T _{d(off)} T _f E _{on} E _{off} E _{ts} T _{d(on)} T _r T _{d(off)} T _{d(off)} T _f T _{d(off)} T _f E _{on}	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss	$R_{G} = 30 \Omega, V_{GE} = 15 V,$ Inductive Load, $T_{C} = 25^{\circ}C$ $V_{CC} = 600 V, I_{C} = 5 A,$ $R_{G} = 30 \Omega, V_{GE} = 15 V,$	- - - - - - - - - - - -	20.8 24.8 104 247 94 341 4.8 40 25.6 134 393		ns ns uJ uJ uJ ns ns ns ns uJ
T _{d(on)} T _r T _{d(off)} T _f E _{on} E _{off} E _{ts} T _{d(on)} T _r T _{d(off)} T _f E _{on} E _{on} E _{on} T _f E _{on} T _f E _{on} E _{on} E _{on}	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss	$R_{G} = 30 \Omega, V_{GE} = 15 V,$ Inductive Load, $T_{C} = 25^{\circ}C$ $V_{CC} = 600 V, I_{C} = 5 A,$ $R_{G} = 30 \Omega, V_{GE} = 15 V,$	- - - - - - - - - - - - - - -	20.8 24.8 104 247 94 341 4.8 40 25.6 134 393 114	- - - - - - - - - - - - - -	ns ns uJ uJ uJ uJ ns ns ns ns uJ uJ
T _{d(on)} T _r T _{d(off)} T _f E _{on} E _{off} E _{ts} T _{d(on)} T _r T _{d(off)} T _f E _{on} E _{off} E _{ts} T _{d(off)} T _f E _{on} E _{off} E _{off} E _{off}	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss	$R_{G} = 30 \Omega, V_{GE} = 15 V,$ Inductive Load, $T_{C} = 25^{\circ}C$ $V_{CC} = 600 V, I_{C} = 5 A,$ $R_{G} = 30 \Omega, V_{GE} = 15 V,$	- - - - - - - - - - - - - - -	20.8 24.8 104 247 94 341 4.8 40 25.6 134 393 114 507	- - - - - - - - - - - - - -	ns ns uJ uJ uJ ns ns ns ns uJ uJ uJ uJ
T _{d(on)} T _r T _{d(off)} T _f E _{on}	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss	$R_{G} = 30 \Omega, V_{GE} = 15 V,$ Inductive Load, $T_{C} = 25^{\circ}C$ $V_{CC} = 600 V, I_{C} = 5 A,$ $R_{G} = 30 \Omega, V_{GE} = 15 V,$	- - - - - - - - - - - - - - -	20.8 24.8 104 247 94 341 4.8 40 25.6 134 393 114	- - - - - - - - - - - - - -	ns ns uJ uJ uJ uJ ns ns ns ns uJ uJ

Typical Performance Characteristics

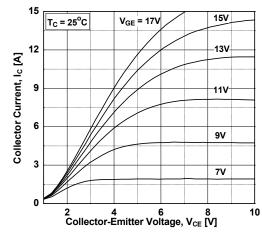


Figure 3. Typical Saturation Voltage Characteritics

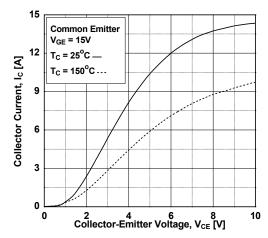


Figure 5. Saturation Voltage vs. Case Temperature at Variant Current Level

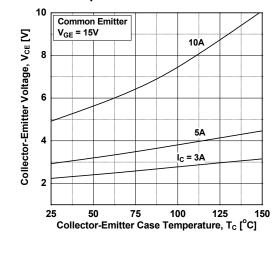
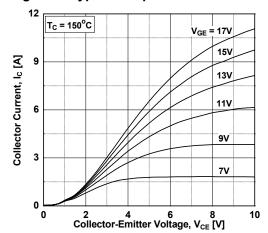



Figure 2. Typical Output Characteristics

Figure 4. Transfer Characteristics

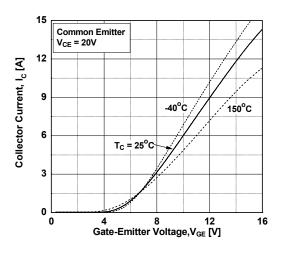
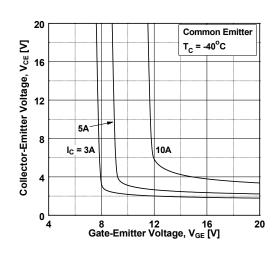
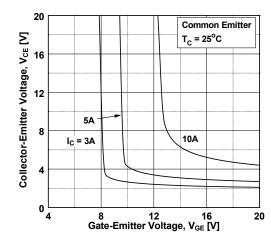




Figure 6. Saturation Voltage vs. VGE

Typical Performance Characteristics

Figure 7. Saturation Voltage vs. VGE

Figure 9. Capacitance Characteristics

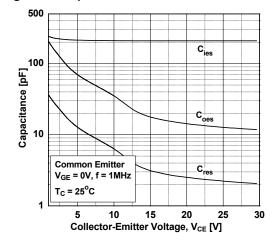


Figure 11. SOA Characteristics

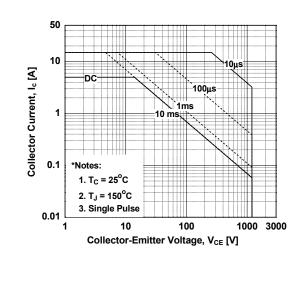
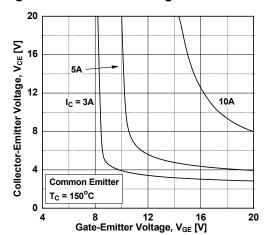



Figure 8. Saturation Voltage vs. VGE

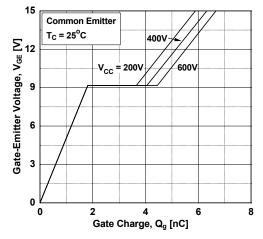
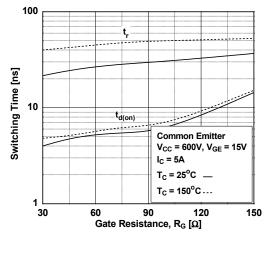



Figure 12. Turn-on Characteristics vs. Gate Resistance

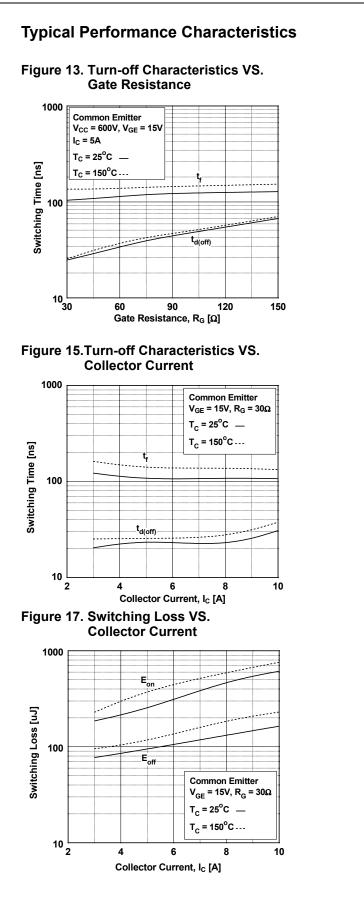


Figure 14.Turn-on Characteristics VS. Collector Current

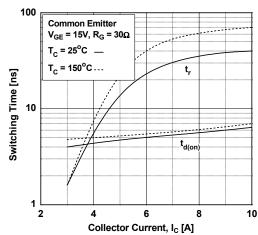
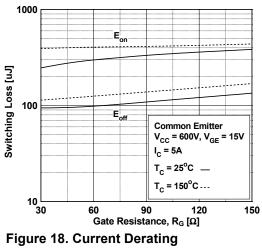
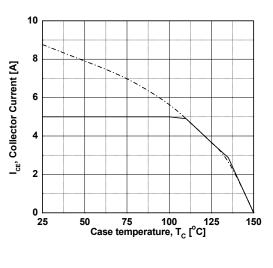
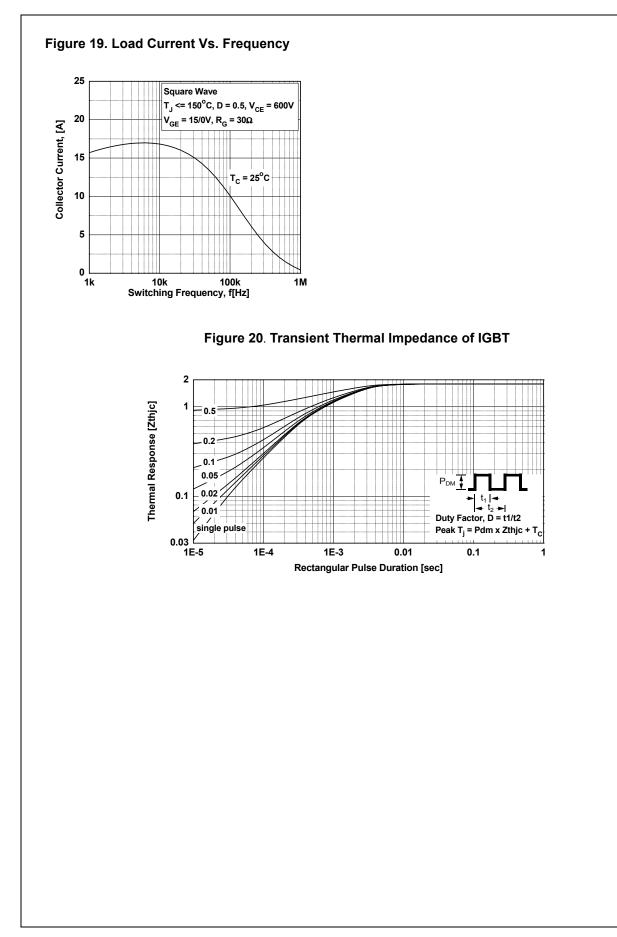
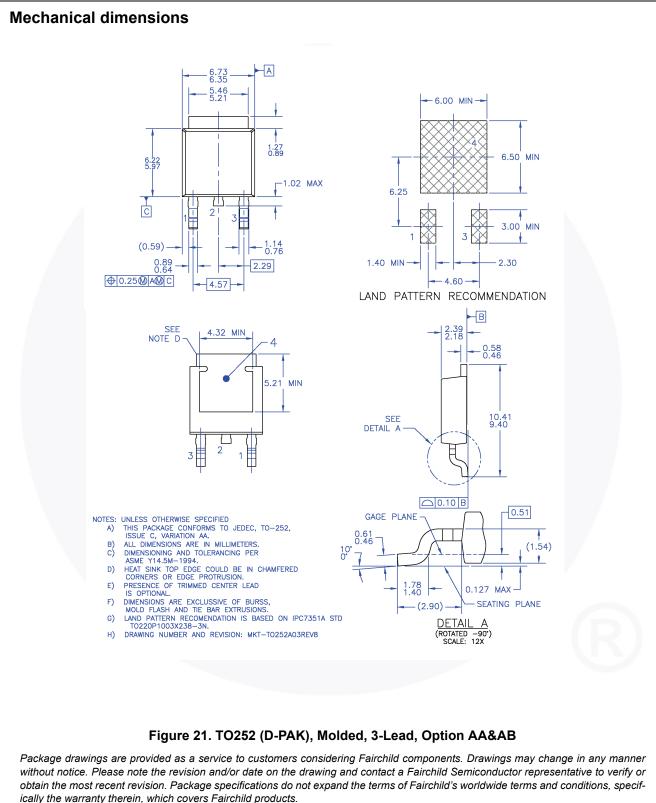
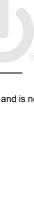






Figure 16.Switching Loss VS. Gate Resistance



Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/package/packageDetails.html?id=PN_TT252-003

FGD5T120SH — 1200 V, 5 A FS Trench IGBT

TRADEMARKS

FAIRCHILD

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower TM AttitudeEngine TM Awind [®] Ax-CAP [®] * BitSiC TM Build it Now TM CorePLUS TM CorePOWER TM CROSSVOLT TM CTL TM CUrrent Transfer Logic TM DEUXPEED [®] Dual Cool TM EcoSPARK [®] EfficentMax TM ESBC TM Fairchild [®] Fairchild [®] Fairchild [®] Fairchild [®] Fatchild [®]	$eq:spectral_set_set_set_set_set_set_set_set_set_set$	© Power Supply WebDesigner [™] PowerXS [™] Proyrammable Active Droop [™] QFET [®] QS [™] Quiet Series [™] RapidConfigure [™] \underbrace{O} T [™] Saving our world, 1mW/W/kW at a time [™] SignalWise [™] SmartMax [™] SMART START [™] Solutions for Your Success [™] SPM [®] STEALTH [™] SuperSOT [™] -3 SuperSOT [™] -8 SupreMOS [®] SyncFET [™] SyncFET [™]	$\label{eq:system} \begin{split} & \overbrace{\begin{subarray}{c} SYSTEM & \textcircled{\begin{subarray}{c} System & \textcircled{\bgen{subarray}{c} System & \textcircled{\bgen{subarray}{c} System & \textcircled{\bed} & \textcircled{\begin{subarray}{c} System & \begin$
--	---	---	---

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT <u>HTTP://WWW.FAIRCHILDSEMI.COM</u>. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

AUTHORIZED USE

Unless otherwise specified in this data sheet, this product is a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability. This product may not be used in the following applications, unless specifically approved in writing by a Fairchild officer: (1) automotive or other transportation, (2) military/aerospace, (3) any safety critical application – including life critical medical equipment – where the failure of the Fairchild product reasonably would be expected to result in personal injury, death or property damage. Customer's use of this product is subject to agreement of this Authorized Use policy. In the event of an unauthorized use of Fairchild's product, Fairchild accepts no liability in the event of product failure. In other respects, this product shall be subject to Fairchild's Worldwide Terms and Conditions of Sale, unless a separate agreement has been signed by both Parties.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Terms of Use

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized distributors is done bound this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition		
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.		
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.		

Rev. 177

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC