mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

December 2014

Features

- Maximum Junction Temperature : T_J = 175^oC
- Positive Temperature Co-efficient for Easy Parallel Operating
- Low Saturation Voltage: V_{CE(sat)} = 2.3 V (Typ.) @ I_C = 40 A
- + 100% of The Parts Tested for $I_{LM}^{\ (1)}$
- Short Circuit Ruggedness > 5 us @ 150°C
- High Input Impedance
- · RoHS Compliant

General Description

Using novel field stop IGBT technology, Fairchild's new series of field stop 2nd generation IGBTs offer the optimum performance for welder applications where low conduction and switching losses are essential.

Applications

Only for Welder

Absolute Maximum Ratings T_C = 25°C unless otherwise noted

Symbol	Description		FGH12040WD_F155	Unit
V _{CES}	Collector to Emitter Voltage		1200	V
	Gate to Emitter Voltage		±25	V
GES	Transient Gate to Emitter Voltage		±30	V
	Collector Current	@ T _C = 25°C	80	A
	Collector Current	@ T _C = 100°C	40	A
I _{LM (1)}	Clamped Inductive Load Current	@ T _C = 25°C	100	A
I _{CM (2)}	Pulsed Collector Current		100	A
1_	Diode Continuous Forward Current	@ T _C = 25°C	80	A
·F	Diode Continuous Forward Current	@ T _C = 100 ^o C	40	A
I _{FM (2)}	Diode Maximum Forward Current		100	A
SCWT (3)	Short Circuit Withstand Time,	@ T _C = 150 ^o C	5	us
Pa	Maximum Power Dissipation	@ T _C = 25°C	428	W
' D	Maximum Power Dissipation	@ T _C = 100 ^o C	214	W
TJ	Operating Junction Temperature		-55 to +175	°C
T _{stg}	Storage Temperature Range		-55 to +175	°C
TL	Maximum Lead Temp. for soldering Purposes, 1/8" from case for 5 seconds	;	300	°C

Notes:

1. V_{CC} = 600 V, V_{GE} = 15 V, I_C = 100 A, R_G = 23 Ω , Inductive Load 2. Repetitive rating : Pulse width limited by max, junction temperature 3. V_{CC} = 600 V, V_{GE} = 12 V

Thermal Characteristics

Symbol	Parameter	FGH12040WD_F155	Unit
R _{0JC} (IGBT)	Thermal Resistance, Junction to Case	0.35	°C/W
$R_{\theta JC}$ (Diode)	Thermal Resistance, Junction to Case	1.4	°C/W
$R_{ hetaJA}$	Thermal Resistance, Junction to Ambient	40	°C/W

Package Marking and Ordering Information

Part Number	Top Mark	Package	Packing Method	Reel Size	Tape Width	Quantity
FGH12040WD_F155	FGH12040WD	TO-247 G03	Tube	-	-	30

Electrical Characteristics of the IGBT $T_{C} = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Off Charac	teristics					
BV _{CES}	Collector to Emitter Breakdown Voltage	V _{GE} = 0 V, I _C = 250 uA	1200	-	-	V
$\frac{\Delta BV_{CES}}{\Delta T_{J}}$	Temperature Coefficient of Breakdown Voltage	V _{GE} = 0 V, I _C = 250 uA	-	1.2	-	V/ºC
I _{CES}	Collector Cut-Off Current	$V_{CE} = V_{CES}, V_{GE} = 0 V$	-	-	250	uA
I _{GES}	G-E Leakage Current	V_{GE} = V_{GES} , V_{CE} = 0 V	-	-	±400	nA
On Charac	teristics					
V _{GE(th)}	G-E Threshold Voltage	I _C = 40 mA, V _{CE} = V _{GE}	4.8	6.4	8.0	V
		$I_{C} = 40 \text{ A}, V_{GE} = 15 \text{ V}$ $T_{C} = 25^{\circ}\text{C}$	-	2.3	2.9	V
V _{CE(sat)}	Collector to Emitter Saturation Voltage	$I_{C} = 40 \text{ A}, V_{GE} = 15 \text{ V},$ $T_{C} = 175^{\circ}\text{C}$	-	2.7	-	V
Dynamic C	haracteristics					
C _{ies}	Input Capacitance		-	2800	-	pF
C _{oes}	Output Capacitance	$V_{CE} = 30 V_{V_{GE}} = 0 V_{OE}$	-	105	-	pF
C _{res}	Reverse Transfer Capacitance		-	60	-	pF
Switching	Characteristics					
t _{d(on)}	Turn-On Delay Time		-	45	-	ns
t _r	Rise Time		-	70	-	ns
t _{d(off)}	Turn-Off Delay Time	$V_{CC} = 600 \text{ V}, I_{C} = 40 \text{ A},$	-	560	-	ns
t _f	Fall Time	$R_{G} = 23 \Omega, V_{GE} = 15 V,$	-	15	-	ns
Eon	Turn-On Switching Loss	Inductive Load, T _C = 25°C	-	4.1	-	mJ
E _{off}	Turn-Off Switching Loss		-	1.0	-	mJ
E _{ts}	Total Switching Loss		-	5.1	-	mJ
t _{d(on)}	Turn-On Delay Time		-	43	-	ns
t _r	Rise Time		-	73	-	ns
t _{d(off)}	Turn-Off Delay Time	$V_{CC} = 600 \text{ V}, \text{ I}_{C} = 40 \text{ A},$ $R_{G} = 23 \Omega, V_{GE} = 15 \text{ V},$ Inductive Load, $T_{C} = 175^{\circ}\text{C}$	-	572	-	ns
t _f	Fall Time		-	58	-	ns
Eon	Turn-On Switching Loss		-	6.9	-	mJ
E _{off}	Turn-Off Switching Loss		-	1.9	-	mJ
E _{ts}	Total Switching Loss		-	8.8	-	mJ

Electrical Characteristics of the IGBT (continued)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Qg	Total Gate Charge	V _{CE} = 600 V, I _C = 40 A, V _{GE} = 15 V	-	226	-	nC
Q _{ge}	Gate to Emitter Charge		-	18	-	nC
Q _{gc}	Gate to Collector Charge		-	155	-	nC

Electrical Characteristics of the DIODE T_C = 25°C unless otherwise noted

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{FM}	Diode Forward Voltage	I _F = 40 A, T _C = 25 ^o C	-	3.6	4.7	V
		I _F = 40 A, T _C = 175°C	-	2.9	-	V
t _{rr}	Diode Reverse Recovery Time	V _R = 600 V, I _F = 40 A, di _F /dt = 200 A/us, T _C = 25 ^o C	-	71	-	ns
l _{rr}	Diode Peak Reverse Recovery Current		-	6.8	-	А
Q _{rr}	Diode Reverse Recovery Charge		-	242	-	nC
E _{rec}	Reverse Recovery Energy	V _R = 600 V, I _F = 40A, di _F /dt = 200 A/us, T _C = 175 ^o C	-	690	-	uJ
t _{rr}	Diode Reverse Recovery Time		-	500	-	ns
I _{rr}	Diode Peak Reverse Recovery Current		-	17	-	А
Q _{rr}	Diode Reverse Recovery Charge		-	4250	-	nC

Typical Performance Characteristics Figure 1. Typical Output Characteristics 100 100 T_C = 175°C T_C = 25°C 15V 20 V 80 80 Collector Current, I_c [A] Collector Current, l_c [A] 12V 60 60 40 40 10V 20 20 V_{GE} = 8V 0 0 2.0 4.0 6.0 8.0 Collector-Emitter Voltage, V_{CE} [V] 0.0 10.0 0.0 **Figure 3. Typical Saturation Voltage** Characteristics 4.5 100 Common Emitter V_{GE} = 15V Collector-Emitter Voltage, V_{CE} [V] V_{GE} = 15V 4.0 80 $T_{c} = 25^{\circ}C$ — Collector Current, I_c [A] 3.5 T_C = 175°C ... 60 3.0 2.5 40 2.0 20 1.5 1.0 0 50 25 0.0 1.0 2.0 3.0 4.0 5.0 Collector-Emitter Voltage, V_{CE} [V] Figure 5. Saturation Voltage vs. V_{GE} 20 20 Common Emitter Collector-Emitter Voltage, V_{CE} [V] $T_{C} = 25^{\circ}C$ Collector-Emitter Voltage, V_{CE} [V] 16 15 40A 12 40A 10 I_C=20A I_C=20A 80A 8 5 4 0 ∟ 4 0 4 8 8 12 16 Gate-Emitter Voltage, V_{GE} [V] 20

Figure 2. Typical Output Characteristics

Figure 6. Saturation Voltage vs. V_{GE}

Figure 18. Reverse Recovery Current

©2014 Fairchild Semiconductor Corporation FGH12040WD Rev. C7