imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

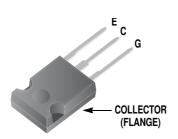
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

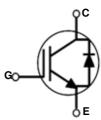
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

November 2008

SEMICONDUCTOR®


FGH30N120FTD 1200V, 30A Trench IGBT


Features

- · Field stop trench technology
- High speed switching
- Low saturation voltage: V_{CE(sat)} = 1.6V @ I_C = 30A
- High input impedance
- RoHS compliant •

Applications

- Induction heating and Microwave oven
- · Soft switching applications

Using advanced field stop trench technology, Fairchild's 1200V trench IGBTs offer superior conduction and switching perfor-

mances, and easy parallel operation with exceptional avalanche

ruggedness. This device is designed for soft switching applica-

General Description

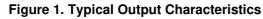
tions.

Absolute Maximum Ratings

Symbol	Description		Ratings	Units
V _{CES}	Collector to Emitter Voltage		1200	V
V _{GES}	Gate to Emitter Voltage		± 25	V
I _C	Collector Current	@ T _C = 25°C	60	A
	Collector Current	@ T _C = 100°C	30	A
I _{CM (1)}	Pulsed Collector Current	@ T _C = 25 ^o C	90	A
I _F	Diode Continuous Forward Current	@ T _C = 100°C	30	A
P _D	Maximum Power Dissipation	@ T _C = 25°C	339	W
. D	Maximum Power Dissipation	@ T _C = 100°C	132	W
TJ	Operating Junction Temperature	-55 to +150	°C	
T _{stg}	Storage Temperature Range		-55 to +150	°C
TL	Maximum Lead Temp. for soldering Purposes, 1/8" from case for 5 second	300	°C	

Notes: 1: Repetitive rating: Pulse width limited by max. junction temperature

Thermal Characteristics


Symbol Parameter		Тур.	Max.	Units	
$R_{\theta JC}(IGBT)$	Thermal Resistance, Junction to Case	-	0.38	°C/W	
$R_{\theta JC}(Diode)$	Diode) Thermal Resistance, Junction to Case		1.2	°C/W	
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	-	40	°C/W	

Package Marking and Ordering Information

Device Marking Device Pa		Pa	ackage Reel Size		Таре	Tape Width		Quantity	
		ГО-247 -			-		30		
Electrica	al Cha	racteristics of t	the IC	GBT T _C = 25	5°C unless otherwise noted	·			
Symbol	I Parameter			Test	Conditions	Min.	Тур.	Max.	Units
Off Charact	teristics								
BV _{CES}	Collector	to Emitter Breakdown V	oltage	$V_{GE} = 0V, I_{C} = 250 \mu A$		1200	-	-	V
I _{CES}	Collector	Cut-Off Current		$V_{CE} = V_{CES}, V_{GE} = 0V$		-	-	1	mA
I _{GES}	G-E Leak	age Current		$V_{GE} = V_{GES}, V_{CE} = 0V$		-	-	±250	nA
On Charact	teristics								
V _{GE(th)}	G-E Thre	shold Voltage		$I_{C} = 30 \text{mA}, V_{CE} = V_{GE}$		3.5	6	7.5	V
. /				I _C = 30A, V _G		-	1.6	2	V
V _{CE(sat)}	Collector to Emitter Saturation Voltage		oltage	$I_{C} = 30A, V_{GE} = 15V,$ $T_{C} = 125^{\circ}C$		-	2.0	-	V
Dynamic C	haracteris	stics							
C _{ies}	Input Cap	out Capacitance				-	5140	-	pF
C _{oes}	Output Ca	apacitance		$ V_{CE} = 30V, V_{GE} = 0V, $ - f = 1MHz		-	150	-	pF
C _{res}	Reverse ⁻	Transfer Capacitance				-	95	-	pF
Switching (Character	istics							
t _{d(on)}		Delay Time				-	31	-	ns
t _r	Rise Time	9				-	101	-	ns
t _{d(off)}	Turn-Off	Delay Time		V _{CC} = 600V,	lo = 30A	-	198	-	ns
t _f	Fall Time			R _G = 10Ω, V	′ _{GE} = 15V,	-	259	-	ns
E _{on}	Turn-On	Switching Loss		Resistive Lo	ad, T _C = 25°C	-	0.54	-	mJ
E _{off}		Switching Loss				-	1.16	1.51	mJ
E _{ts}		tching Loss				-	1.70	-	mJ
t _{d(on)}	Turn-On	Delay Time				-	40	-	ns
t _r	Rise Time					-	127	-	ns
t _{d(off)}	Turn-Off	Delay Time		$V_{CC} = 600V$, $I_C = 30A$, $R_G = 10\Omega$, $V_{GE} = 15V$, Resistive Load, $T_C = 125^{\circ}C$		-	211	-	ns
t _f	Fall Time					-	364	-	ns
E _{on}	Turn-On	Switching Loss				-	0.74	-	mJ
E _{off}	Turn-Off	Switching Loss				-	1.63	-	mJ
E _{ts}	Total Swit	tching Loss				-	2.37	-	mJ
Qg	Total Gate	e Charge				-	208	-	nC
Q _{ge}	Gate to E	mitter Charge		$V_{CE} = 600V,$	I _C = 30A,	-	41	-	nC
Q _{gc}		Collector Charge		V _{GE} = 15V		-	97	-	nC

Symbol	Parameter	Parameter Test Conditions		Min.	Тур.	Max	Units
V _{FM}	Diode Forward Voltage	I _F = 30A	$T_{\rm C} = 25^{\rm o}{\rm C}$	-	1.3	1.7	v
FIN	FM Diode Forward Voltage	1 _F = 00/1	$T_{C} = 125^{\circ}C$	-	1.3	-	1
t _{rr} Diode	Diode Reverse Recovery Time	- Ι _F =30A, di/dt = 200A/μs	$T_{\rm C} = 25^{\rm o}{\rm C}$	-	730	-	ns
•rr	,		$T_{\rm C} = 125^{\rm o}{\rm C}$	-	775	-	
1			$T_{\rm C} = 25^{\rm o}{\rm C}$	-	43	-	А
Irr Diode Feak Nev			$T_{\rm C} = 125^{\rm o}{\rm C}$	-	47	-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
0	Q _{rr} Diode Reverse Recovery Charge		$T_{\rm C} = 25^{\rm o}{\rm C}$	-	5.9	-	μC
∽rr			T _C = 125°C	-	18.2	-	μΟ

Typical Performance Characteristics

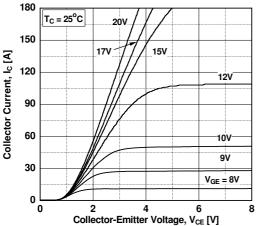


Figure 3. Typical Saturation Voltage Characteristics

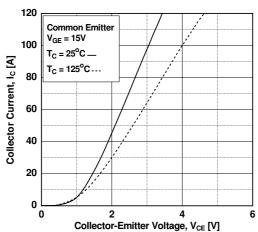


Figure 5. Saturation Voltage vs. Case Temperature at Variant Current Level

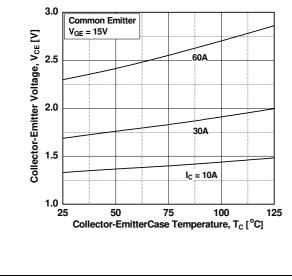


Figure 2. Typical Output Characteristics

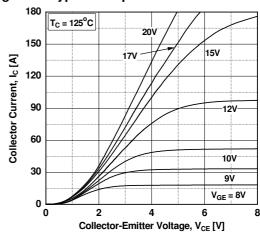


Figure 4. Transfer Characteristics

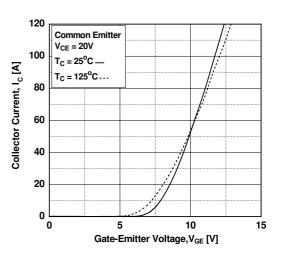
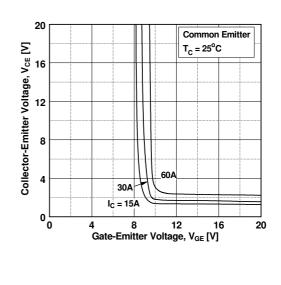



Figure 6. Saturation Voltage vs. V_{GE}

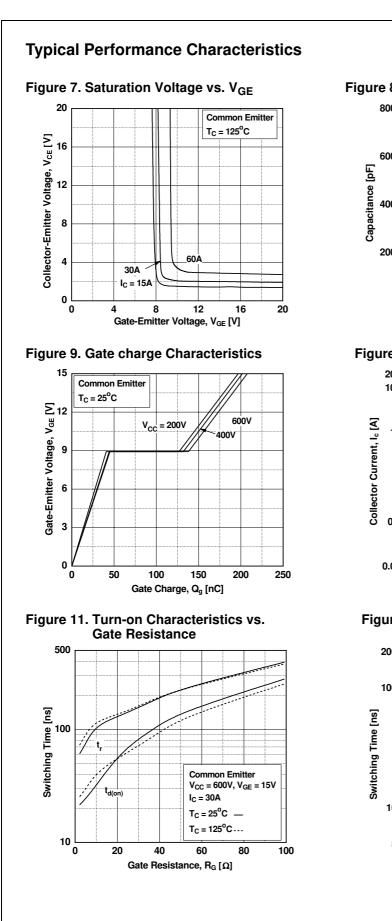


Figure 8. Capacitance Characteristics

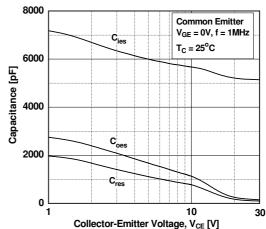


Figure 10. SOA Characteristics

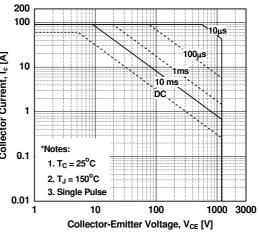
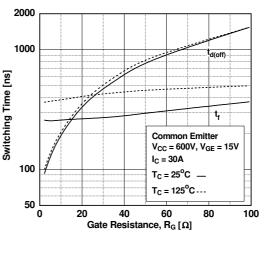
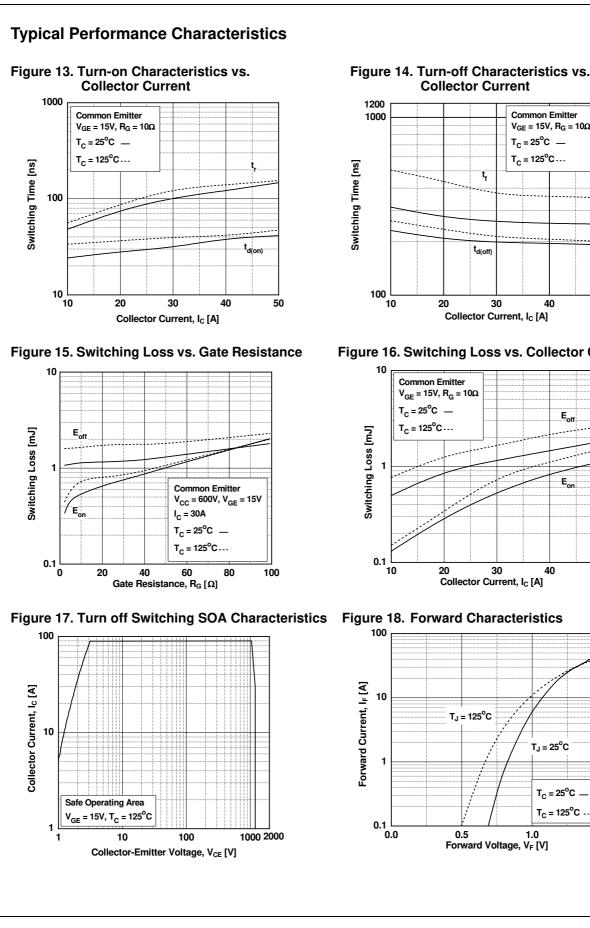
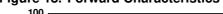
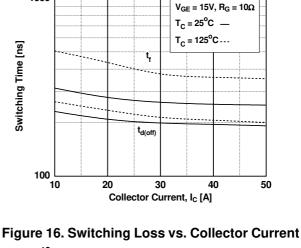





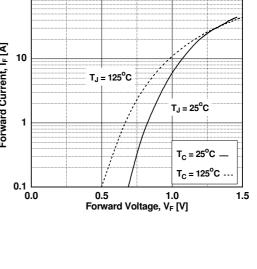
Figure 12. Turn-off Characteristics vs. Gate Resistance

FGH30N120FTD 1200V, 30A Trench IGBT



Eof Eor

30


40

50

Common Emitter

Figure 18. Forward Characteristics

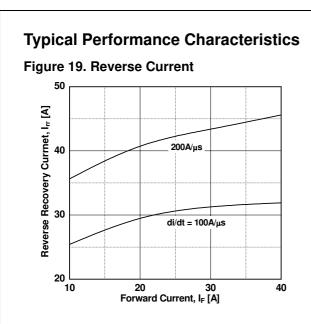
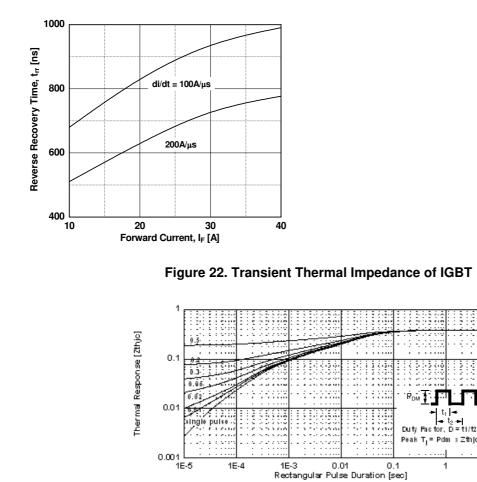
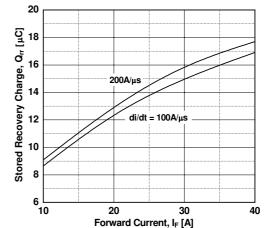
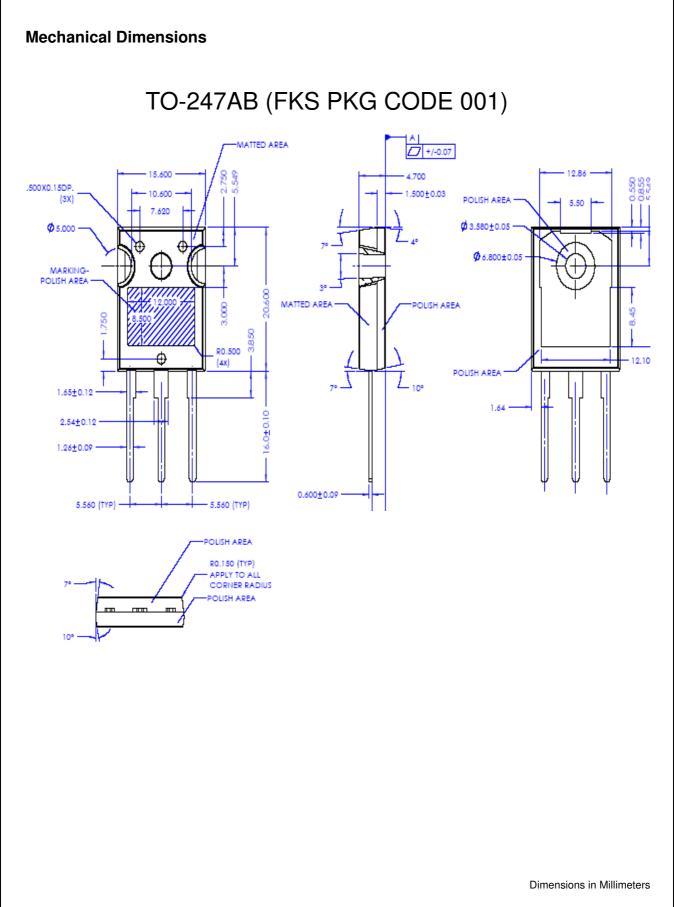




Figure 21. Reverse Recovery Time



Ē

10

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

Build it Now™	F-PFS™	PowerTrench [®]	The Power Franchise
CorePLUS™	FRFET [®]	Programmable Active Droop™	the
CorePOWER™	Global Power Resource SM	QFET®	puwer
CROSSVOLT™	Green FPS™	QS™	franchise
CTL™	Green FPS™ e-Series™	Quiet Series™	TinyBoost™ TinyBuol
Current Transfer Logic™	GTO™	RapidConfigure™	TinyBuck™ TinyLogic [®]
EcoSPARK [®]	IntelliMAX™		
EfficentMax™	ISOPLANAR™	т	TINYOPTO™ TinyPower™
EZSWITCH™ *	MegaBuck™	Saving our world, 1mW /W /kW at a time™	TinyPWM™
	MICROCOUPLER™	SmartMax™	TinyWire™
E%	MicroFET™	SMART START™	µSerDes™
— 8	MicroPak™	SPM [®]	µ3erDes ····
	MillerDrive™	STEALTH™	μ
airchild®	MotionMax™	SuperFET™	SerDes
airchild Semiconductor®	Motion-SPM™	SuperSOT™-3	UHC [®]
ACT Quiet Series™	OPTOLOGIC®	SuperSOT™-6	Ultra FRFET™
ACT	OPTOPLANAR®	SuperSOT™-8	UniFET™
AST®	B	SupreMOS™	VCX™
astvCore™		SyncFET™	VisualMax™
lashWriter [®] *	PDP SPM™		
PS™	Power-SPM™	GENERAL	
	FOWEI-OF MI		

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Farichild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's Ill range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts buying direct or from authorized Sources. Farichild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.
		Re