imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

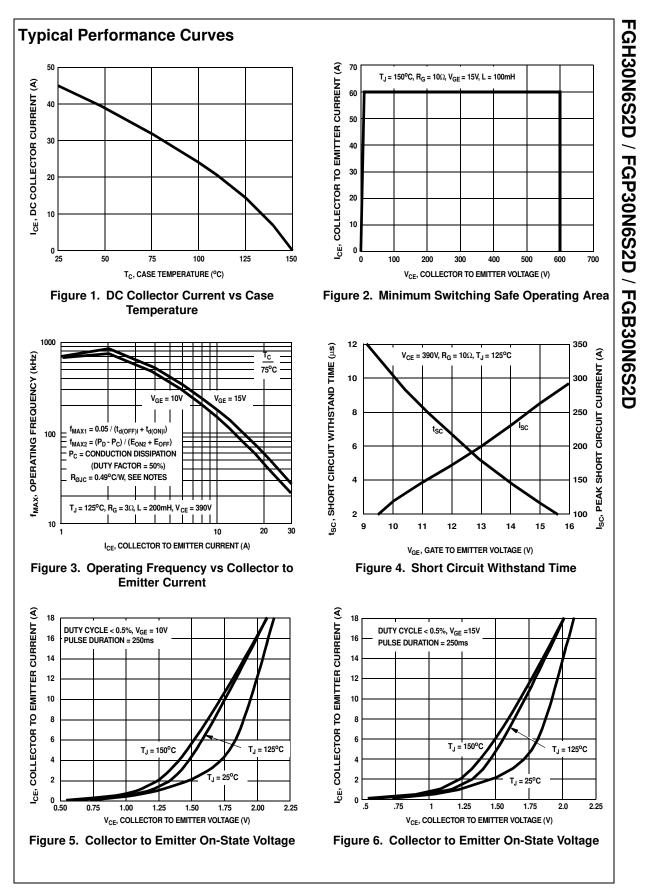
FGH30N6S2D / FGP30N6S2D / FGB30N6S2D 600V, SMPS II Series N-Channel IGBT with Anti-Parallel Stealth[™] Diode Features • 100kHz Operation at 390V, 14A 200kHZ Operation at 390V, 9A · 600V Switching SOA Capability Low Plateau Voltage6.5V Typical Power Factor Correction (PFC) circuits · Full bridge topologies Low Conduction Loss · Half bridge topologies Push-Pull circuits Uninterruptible power supplies · Zero voltage and zero current switching circuits Package Symbol С **JEDEC STYLE TO-247** JEDEC STYLE TO-220AB JEDEC STYLE TO-263AB ÍMD Device Maximum Ratings T_C= 25°C unless otherwise noted Symbol Parameter Units Ratings

July 2001

General Description

The FGH30N6S2D, FGP30N6S2D, and FGB30N6S2D are Low Gate Charge, Low Plateau Voltage SMPS II IGBTs combining the fast switching speed of the SMPS IGBTs along with lower gate charge and plateau voltage and avalanche capability (UIS). These LGC devices shorten delay times, and reduce the power requirement of the gate drive. These devices are ideally suited for high voltage switched mode power supply applications where low conduction loss, fast switching times and UIS capability are essential. SMPS II LGC devices have been specially designed for:

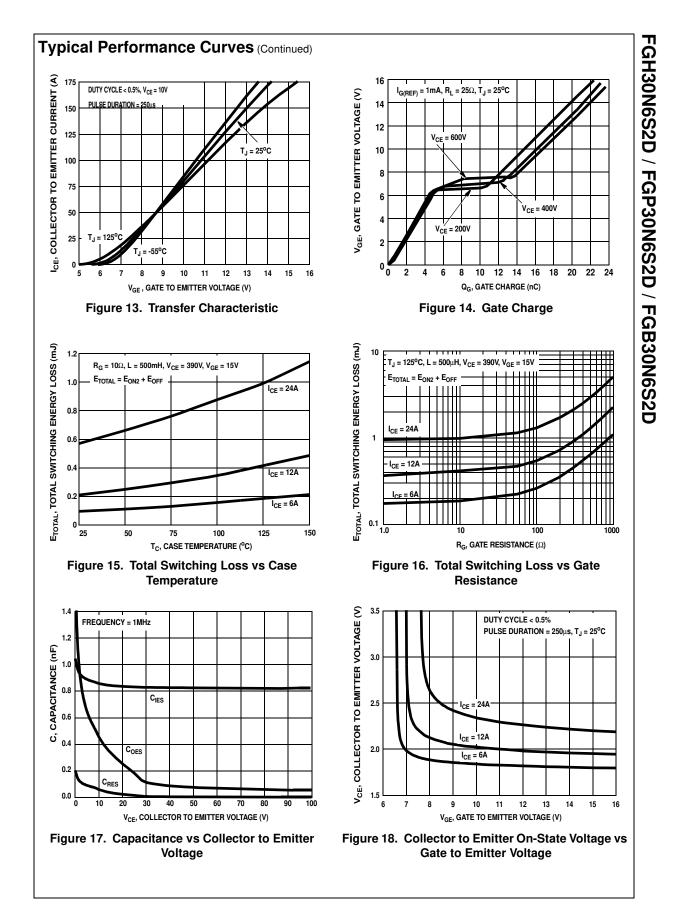
IGBT formerly Developmental Type TA49336 Diode formerly Developmental Type TA49390

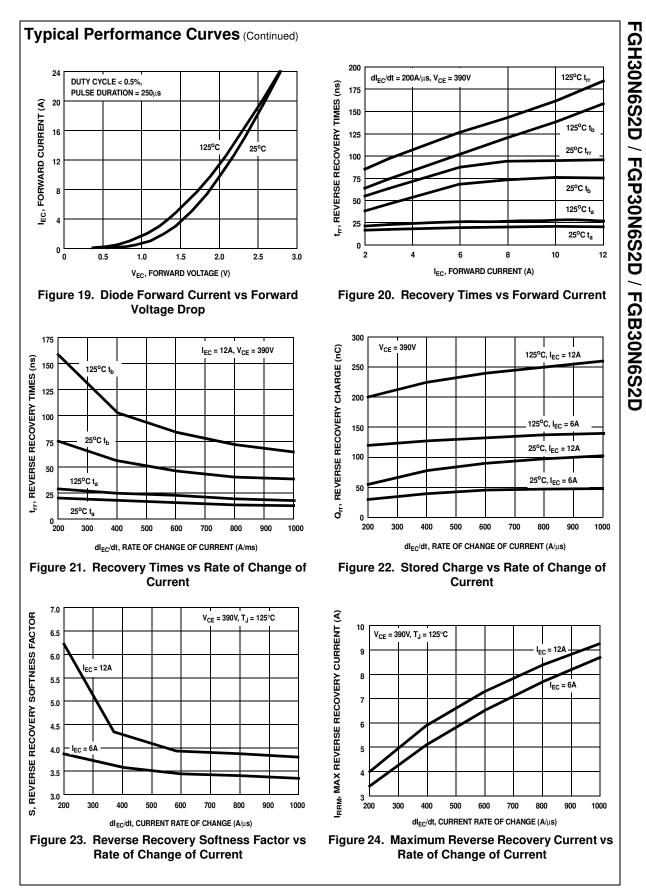

- Typical Fall Time.....90ns at TJ = 125°C

Symbol	Falalletei	пашуз	Units				
BV _{CES}	Collector to Emitter Breakdown Voltage	600	V				
I _{C25}	Collector Current Continuous, T _C = 25°C	45	Α				
I _{C110}	Collector Current Continuous, T _C = 110°C	20	Α				
I _{CM}	Collector Current Pulsed (Note 1)	108	Α				
V _{GES}	Gate to Emitter Voltage Continuous	±20	V				
V _{GEM}	Gate to Emitter Voltage Pulsed	±30	V				
SSOA	Switching Safe Operating Area at T _J = 150°C, Figure 2	60A at 600V					
E _{AS}	Pulsed Avalanche Energy, $I_{CE} = 12A$, $L = 2mH$, $V_{DD} = 50V$	150	mJ				
PD	P_D Power Dissipation Total $T_C = 25^{\circ}C$ 167						
	Power Dissipation Derating $T_{C} > 25^{\circ}C$	1.33	W/°C				
TJ	Operating Junction Temperature Range	-55 to 150	°C				
T _{STG}	TG Storage Junction Temperature Range -55 to 150 °C						
operation of NOTE:	ses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the dev the device at these or any other conditions above those indicated in the operational sections of t mited by maximum junction temperature.						

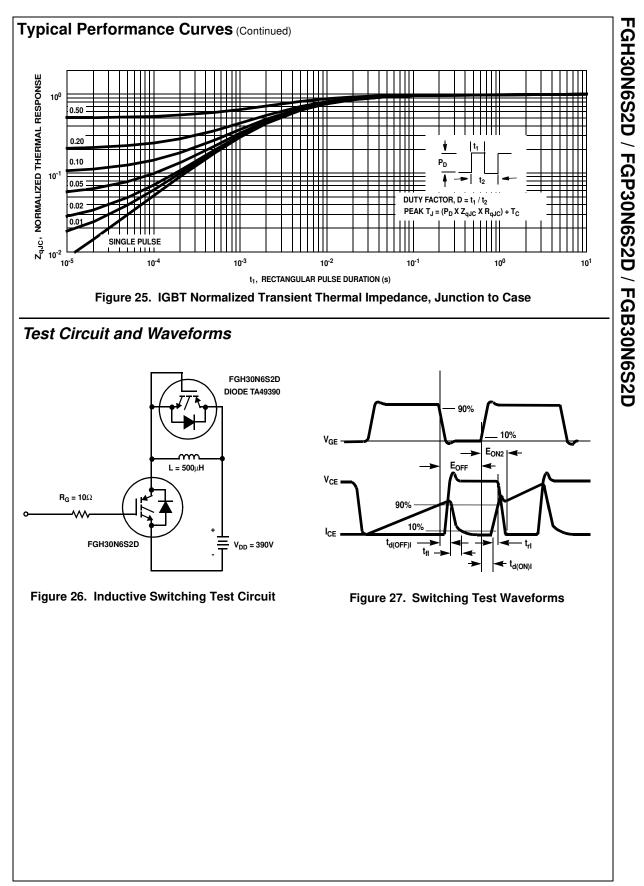


Device Marking		Device	Device F		Таре	Width		Qua	antity
30N6S2D		FGB30N6S2D	Т	O-263AB	24	1mm		8	00
30N6S2D FGP30N6S2D		Т	TO-220AB		-			-	
30N6	30N6S2D FGH30N6S2D		TO-247						
lectrica	al Chai	racteristics T _J = 25°	C un	ess otherwise	noted				
Symbol		Parameter		Test Co	nditions	Min	Тур	Max	Units
ff State	Charact	eristics							
BV _{CES}	Collector	to Emitter Breakdown Volta	age	I _C = 250μA, V	_{GE} = 0	600	-	-	V
I _{CES}	Collector	to Emitter Leakage Curren	t	$V_{CE} = 600V$	T _J = 25°C	-	-	250	μA
					T _J = 125°C	-	-	2	mA
I _{GES}	Gate to E	Emitter Leakage Current		$V_{GE} = \pm 20V$		-	-	±250	nA
n State	Charact	eristics							
V _{CE(SAT)}	Collector	to Emitter Saturation Volta	ge	I _C = 12A,	$T_J = 25^{\circ}C$	-	1.95	2.5	V
				V _{GE} = 15V	T _J = 125°C	-	1.8	2.0	V
V_{EC}	Diode Fo	orward Voltage		I _{EC} = 12A		-	2.1	2.5	V
ynamic	Charact	eristics							
Q _{G(ON)}	Gate Ch	arge		I _C = 12A,	V _{GE} = 15V	-	23	29	nC
-()				$V_{CE} = 300V$	$V_{GE} = 20V$	-	26	33	nC
V _{GE(TH)}		Emitter Threshold Voltage		I _C = 250μA, V		3.5	4.3	5.0	V
V_{GEP}	Gate to I	Gate to Emitter Plateau Voltage			I _C = 12A, V _{CE} = 300V			8.0	V
witching	Charac	teristics							
SSOA	Switchin	g SOA		15V, L = 100μl	_G = 10Ω, V _{GE} = H, V _{CE} = 600V	60	-	-	A
t _{d(ON)} I	Current -	Turn-On Delay Time			e at T _J = 25°C,	-	6	-	ns
t _{rl}		Rise Time		I _{CE} =12A, V _{CE} = 390V,		-	10	-	ns
t _{d(OFF)}		Turn-Off Delay Time		V _{GE} = 350 v, V _{GE} = 15V,		-	40	-	ns
		Fall Time		R _G =10Ω L = 500μH		-	53 55	-	ns
E _{ON1}		Energy (Note 2) Energy (Note 2)				-	110	-	μJ
E _{ON2} E _{OFF}		Energy (Note 2)		Test Circuit - F	gure 26		100	150	μJ μJ
t _{d(ON)} I		Turn-On Delay Time		IGBT and Dioc	e at T _J = 125°C	-	11	-	ns
t _{rl}		Rise Time		I _{CE} = 12A,	-	17	-	ns	
t _{d(OFF)}		Turn-Off Delay Time		V _{CE} = 390V,		-	73	100	ns
t _{fl}		Fall Time		V _{GE} = 15V,		-	90	100	ns
E _{ON1}	Turn-On	Energy (Note 2)		R _G = 10Ω L = 500μΗ		-	55	-	μJ
E _{ON2}	Turn-On	Energy (Note 2)		Test Circuit - F	aure 26	-	160	200	μJ
E _{OFF}	Turn-Off	Energy (Note 3)			3	-	250	350	μJ
t _{rr}	Diode Re	everse Recovery Time		I _{EC} = 12A, dI _E	c/dt = 200A/μs	-	35	46	ns
				$I_{EC} = 1A, dI_{EC'}$	dt = 200A/µs	-	25	32	ns
hermal C	Characte	eristics							
R _{θJC}		Resistance Junction-Case		IGBT		-	-	0.75	°C/W
				Diode		-	-	2.0	°C/W
		n-On loss conditions are sh $_{N_2}$ is the turn-on loss when ode type is specified in figur oss (E _{OFF}) is defined as the ending at the point where t b. 24-1 Method for Measurer							


FGH30N6S2D / FGP30N6S2D / FGB30N6S2D



FGH30N6S2D / FGP30N6S2D / FGB30NS2D Rev. A



FGH30N6S2D / FGP30N6S2D / FGB30NS2D Rev. A

FGH30N6S2D / FGP30N6S2D / FGB30NS2D Rev. A

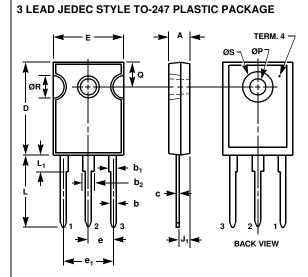
Handling Precautions for IGBTs

Insulated Gate Bipolar Transistors are susceptible to gate-insulation damage by the electrostatic discharge of energy through the devices. When handling these devices, care should be exercised to assure that the static charge built in the handler's body capacitance is not discharged through the device. With proper handling and application procedures, however, IGBTs are currently being extensively used in production by numerous equipment manufacturers in military, industrial and consumer applications, with virtually no damage problems due to electrostatic discharge. IGBTs can be handled safely if the following basic precautions are taken:

- Prior to assembly into a circuit, all leads should be kept shorted together either by the use of metal shorting springs or by the insertion into conductive material such as "ECCOSORBD™ LD26" or equivalent.
- 2. When devices are removed by hand from their carriers, the hand being used should be grounded by any suitable means for example, with a metallic wristband.
- 3. Tips of soldering irons should be grounded.
- 4. Devices should never be inserted into or removed from circuits with power on.
- Gate Voltage Rating Never exceed the gatevoltage rating of V_{GEM}. Exceeding the rated V_{GE} can result in permanent damage to the oxide layer in the gate region.
- 6. Gate Termination The gates of these devices are essentially capacitors. Circuits that leave the gate open-circuited or floating should be avoided. These conditions can result in turn-on of the device due to voltage buildup on the input capacitor due to leakage currents or pickup.
- Gate Protection These devices do not have an internal monolithic Zener diode from gate to emitter. If gate protection is required an external Zener is recommended.

Operating Frequency Information

Operating frequency information for a typical device (Figure 3) is presented as a guide for estimating device performance for a specific application. Other typical frequency vs collector current (I_{CE}) plots are possible using the information shown for a typical unit in Figures 5, 6, 7, 8, 9 and 11. The operating frequency plot (Figure 3) of a typical device shows f_{MAX1} or f_{MAX2} ; whichever is smaller at each point. The information is based on measurements of a typical device and is bounded by the maximum rated junction temperature.


 f_{MAX1} is defined by $f_{MAX1} = 0.05/(t_{d(OFF)I} + t_{d(ON)I})$. Deadtime (the denominator) has been arbitrarily held to 10% of the on-state time for a 50% duty factor. Other definitions are possible. $t_{d(OFF)I}$ and $t_{d(ON)I}$ are defined in Figure 27. Device turn-off delay can establish an additional frequency limiting condition for an application other than T_{JM} . $t_{d(OFF)I}$ is important when controlling output ripple under a lightly loaded condition.

 $f_{MAX2} \text{ is defined by } f_{MAX2} = (P_D - P_C)/(E_{OFF} + E_{ON2}). \\ The allowable dissipation (P_D) is defined by \\ P_D = (T_{JM} - T_C)/R_{\theta JC}. The sum of device switching \\ and conduction losses must not exceed P_D. A 50% \\ duty factor was used (Figure 3) and the conduction \\ losses (P_C) are approximated by P_C = (V_{CE} \times I_{CE})/2.$

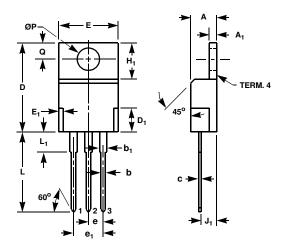
 E_{ON2} and E_{OFF} are defined in the switching waveforms shown in Figure 27. E_{ON2} is the integral of the instantaneous power loss ($I_{CE} \times V_{CE}$) during turn-on and E_{OFF} is the integral of the instantaneous power loss ($I_{CE} \times V_{CE}$) during turn-off. All tail losses are included in the calculation for E_{OFF} ; i.e., the collector current equals zero ($I_{CE} = 0$)

ECCOSORBD™ is a Trademark of Emerson and Cumming, Inc.

TO-247

	INC	IES	MILLI			
SYMBOL	MIN	MAX	MIN	MAX	NOTES	
А	0.180	0.190	4.58	4.82	-	
b	0.046	0.051	1.17	1.29	2, 3	
b ₁	0.060	0.070	1.53	1.77	1, 2	
b ₂	0.095	0.105	2.42	2.66	1, 2	
с	0.020	0.026	0.51	0.66	1, 2, 3	
D	0.800 0.820		20.32	20.82	-	
Е	0.605	0.625	15.37	15.87	-	
е	0.219 TYP		5.56 TYP		4	
e ₁	0.438	BSC	11.1	4		
J ₁	0.090	0.105	2.29	2.66	5	
L	0.620	0.640	15.75	16.25	-	
L ₁	0.145	0.155	3.69	3.93	1	
ØP	0.138	0.144	3.51	3.65	-	
Q	0.210	0.220	5.34	5.58	-	
ØR	0.195	0.205	4.96	5.20	-	
ØS	0.260	0.270	6.61	6.85	-	

1. Lead dimension and finish uncontrolled in L_1 .


Lead dimension and finish uncontrolled in L₁.
Lead dimension (without solder).
Add typically 0.002 inches (0.05mm) for solder coating.
Position of lead to be measured 0.250 inches (6.35mm) from bottom of dimension D.

Position of lead to be measured 0.100 inches (2.54mm) from bottom of di-mension D.

Controlling dimension: Inch.
Revision 1 dated 1-93.

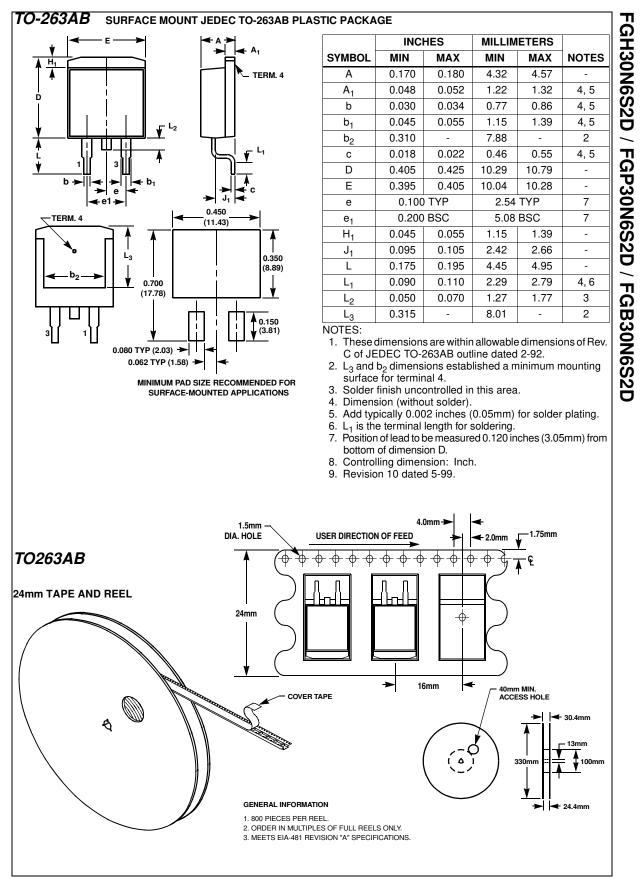
TO-220AB

3 LEAD JEDEC TO-220AB PLASTIC PACKAGE

	INCHES		MILLI			
SYMBOL	MIN	MAX	MIN	MAX	NOTES	
А	0.170	0.180	4.32	4.57	-	
A ₁	0.048	0.052	1.22	1.32	-	
b	0.030	0.034	0.77	0.86	3, 4	
b ₁	0.045	0.055	1.15	1.39	2, 3	
с	0.014	0.019	0.36	0.48	2, 3, 4	
D	0.590	0.610	14.99	15.49	-	
D ₁	-	0.160	-	4.06	-	
Е	0.395	0.410	10.04	10.41	-	
E ₁	-	0.030	-	0.76	-	
е	0.100	TYP	2.5	5		
e ₁	0.200	BSC	5.08 BSC		5	
H ₁	0.235	0.255	5.97	6.47	-	
J ₁	0.100	0.110	2.54	2.79	6	
L	0.530	0.550	13.47	13.97	-	
L ₁	0.130	0.150	3.31	3.81	2	
ØP	0.149	0.153	3.79	3.88	-	
Q	0.102 0.112		2.60	2.84	-	

These dimensions are within allowable dimensions of Rev. J of JEDEC TO-220AB outline dated 3-24-87.

2. Lead dimension and finish uncontrolled in L_1 .


3. Lead dimension (without solder).

4. Add typically 0.002 inches (0.05mm) for solder coating.

5. Position of lead to be measured 0.250 inches (6.35mm) from bottom of dimension D.

6. Position of lead to be measured 0.100 inches (2.54mm) from bottom of dimension D.

Controlling dimension: Inch.
Revision 2 dated 7-97.

FGH30N6S2D / FGP30N6S2D / FGB30NS2D Rev. A

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

FAST® ACEx™ Bottomless™ FASTr™ CoolFET™ FRFET™ CROSSVOLT™ DenseTrench™ GTO™ DOME™ HiSeC™ EcoSPARK™ E²CMOS[™] Ensigna™ FACT™ FACT Quiet Series[™] STAR*POWER is used under license

FAST[®] FASTr[™] FRFET[™] GlobalOptoisolator[™] GTO[™] HiSeC[™] ISOPLANAR[™] LittleFET[™] MicroFET[™] MICROWIRE[™] OPTOLOGIC[™]

OPTOPLANAR[™] PACMAN[™] POP[™] Power247[™] PowerTrench[®] QFET[™] QS[™] QT Optpelectronics[™] Quiet Series[™] SILENT SWITCHER[®] SMART START[™] STAR*POWER™ Stealth™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SyncFET™ TinyLogic™ TruTranslation™ UHC™ UltraFET[®] VCX™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR

CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.