imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

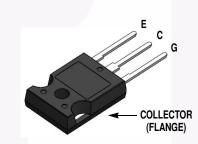
Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

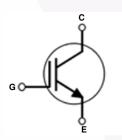
ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized applications, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an equif prese

March 2015

FGH60N60SF 600 V, 60 A Field Stop IGBT

Features


- High Current Capability
- Low Saturation Voltage: V_{CE(sat)} = 2.3 V @ I_C = 60 A
- High Input Impedance
- Fast Switching
- RoHS Compliant


Applications

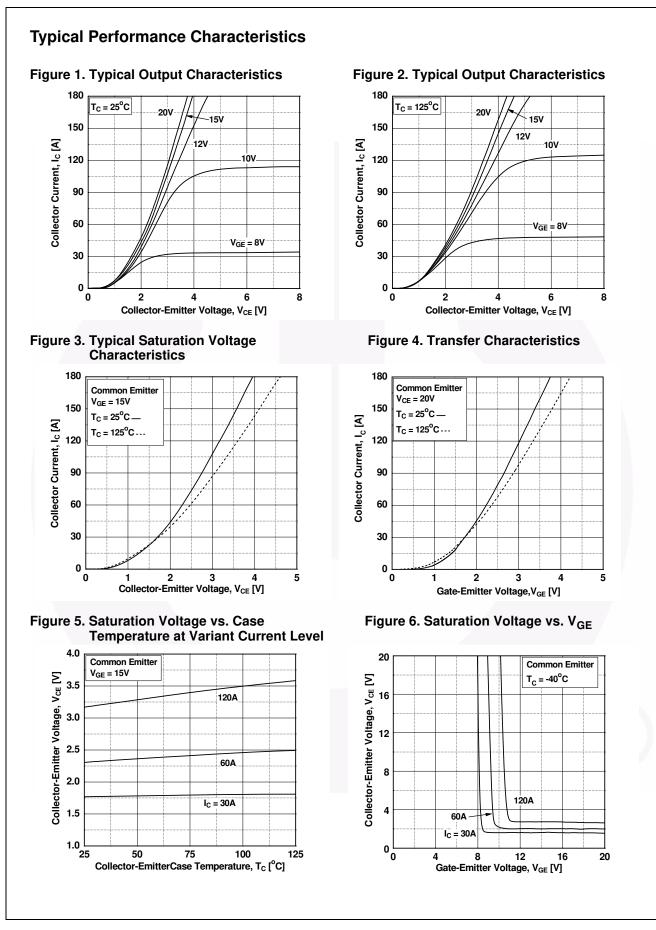
• Solar Inverter, UPS, Welder, PFC

General Description

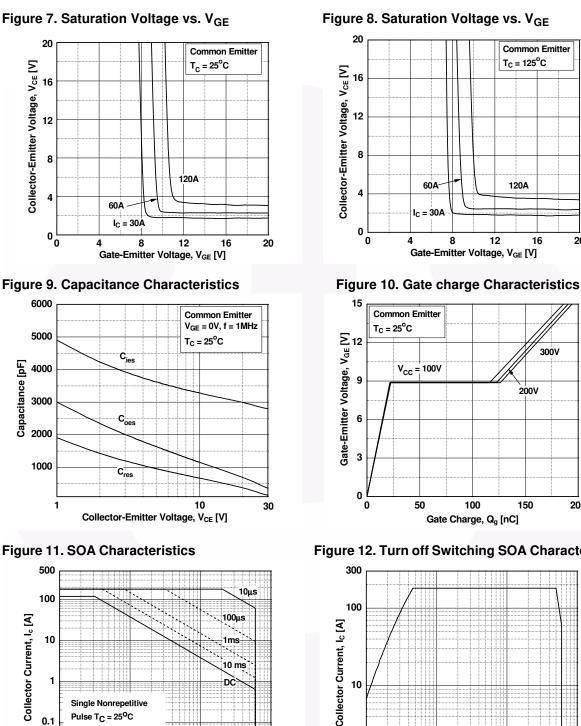
Using novel field stop IGBT technology, Fairchild's field stop IGBTs offer the optimum performance for solar inverter, UPS, welder and PFC applications where low conduction and switching losses are essential.

Absolute Maximum Ratings

Symbol	Description		Ratings	Unit V	
V _{CES}	Collector to Emitter Voltage	600			
V _{GES}	Gate to Emitter Voltage	±20	V		
	Transient Gate-to-Emitter Voltage	±30	v		
I _C	Collector Current	@ T _C = 25°C	120	A	
	Collector Current	@ T _C = 100°C	60	A	
I _{CM (1)}	Pulsed Collector Current	@ T _C = 25°C	180	А	
P _D	Maximum Power Dissipation	@ T _C = 25°C	378	W	
	Maximum Power Dissipation	@ T _C = 100°C	151	W	
TJ	Operating Junction Temperature		-55 to +150	°C	
T _{stg}	Storage Temperature Range		-55 to +150	°C	
Τ _L	Maximum Lead Temp. for soldering Purposes, 1/8" from case for 5 seconds	300	°C		


Notes:

1: Repetitive test, Pulse width limited by max. juntion temperature


Thermal Characteristics

Symbol	Parameter	meter Typ.		Unit	
$R_{\theta JC}(IGBT)$	Thermal Resistance, Junction to Case	-	0.33	°C/W	
$R_{ extsf{ heta}JA}$	Thermal Resistance, Junction to Ambient	-	40	°C/W	

Part Nu	Part NumberTop MarkPackageFGH60N60SFTUFGH60N60SFTO-247		Package	Packing Method	Reel Size	Tape Wid	th Q	Quantity	
FGH60N60			Tube	N/A	N/A		30		
Electric	al Ch	aracteristic	s of the I	GBT $T_{C} = 25^{\circ}C$ unless other	erwise noted				
Symbol	bol Parameter		Test Conditions		. Typ.	Max.	Unit		
Off Charac	teristics	1			H				
BV _{CES}	Collector to Emitter Breakdown Voltage		V _{GE} = 0 V, I _C = 250 μA 6		0 -	-	V		
$\Delta BV_{CES} / \Delta T_J$	Temperature Coefficient of Breakdown Voltage		$V_{GE} = 0 V, I_C = 250 \mu A$ -		0.4	-	V/ºC		
I _{CES}	Collector Cut-Off Current		V _{CE} = V _{CES} , V _{GE} = 0 V -		_	250	μA		
I _{GES}		akage Current		$V_{GE} = V_{GES}, V_{CE} = 0 V$	-	-	±400	nA	
On Charac	teristics	;							
V _{GE(th)}	G-E Th	reshold Voltage		$I_C = 250 \ \mu A, \ V_{CE} = V_{GE}$	4.	5.0	6.5	V	
		Collector to Emitter Saturation Voltage		$I_{C} = 60 \text{ A}, V_{GE} = 15 \text{ V}$	-	2.3	2.9	V	
V _{CE(sat)}	Collect			$I_{\rm C} = 60$ A, $V_{\rm GE} = 15$ V, $T_{\rm C} = 125^{\rm o}{\rm C}$		2.5	-	V	
Dynamic C	baracte	rietice							
C _{ies}	1	apacitance			-	2820	-	pF	
C _{oes}		Capacitance		$V_{CE} = 30 V, V_{GE} = 0 V,$	-	350	_	pF	
C _{res}		Reverse Transfer Capacitance		f = 1 MHz	-	140	-	pF	
Switching	1					00			
t _{d(on)}		n Delay Time	_	-	-	22	-	ns	
t _r	Rise Ti				-	42	-	ns	
t _{d(off)}		Turn-Off Delay Time		$V_{CC} = 400 \text{ V}, \text{ I}_{C} = 60 \text{ A},$ $R_{G} = 5 \Omega, \text{ V}_{GE} = 15 \text{ V},$		134	-	ns	
t _í	Fall Tin			nductive Load, $T_C = 25^{\circ}C$	°C -	31	62	ns	
E _{on}		n Switching Loss		-	-	1.79	-	mJ	
E _{off}		ff Switching Loss		-	-	0.67	-	mJ	
E _{ts}		witching Loss				2.46	-	mJ	
t _{d(on)}		n Delay Time		-	-	22	-	ns	
t _r	Rise Ti			+	-	44	-	ns	
t _{d(off)}		ff Delay Time		$V_{CC} = 400 \text{ V}, \text{ I}_{C} = 60 \text{ A}, \\ R_{G} = 5 \Omega, \text{ V}_{GE} = 15 \text{ V}, \\ \hline \text{Inductive Load, } T_{C} = 125^{\circ}\text{C}$		144	-	ns	
t _f	Fall Tin				5°C -	43	-	ns	
E _{on}		n Switching Loss			-	1.88	- /	mJ	
E _{off}		ff Switching Loss		1	-	1.0	-	mJ	
E _{ts}		witching Loss			-	2.88	-	mJ	
Qg		ate Charge		V _{CE} = 400 V, I _C = 60 A,	-	198	-	nC	
Q _{ge}		Emitter Charge		$V_{CE} = 400 \text{ V}, \text{ I}_{C} = 60 \text{ A},$ $V_{GE} = 15 \text{ V}$	-	22	-	nC	
Q _{gc}	Gate to	Collector Charge			-	106	-	nC	

©2008 Fairchild Semiconductor Corporation FGH60N60SF Rev. 1.4

Typical Performance Characteristics

Figure 8. Saturation Voltage vs. V_{GE}

60A

I_C = 30A

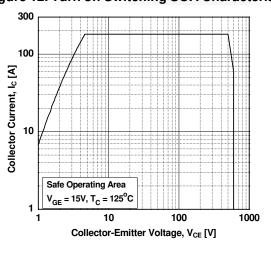
8

Common Emitter

T_C = 125^oC

120A

16


20

12

Gate-Emitter Voltage, V_{GE} [V]

Common Emitter $T_C = 25^{\circ}C$ 300V V_{CC} = 100V 2000 50 100 150 200 Gate Charge, Qg [nC]

0.01

1

Curves must be derated linearly with increase

10

Collector-Emitter Voltage, V_{CE} [V]

100

in temperature

1000

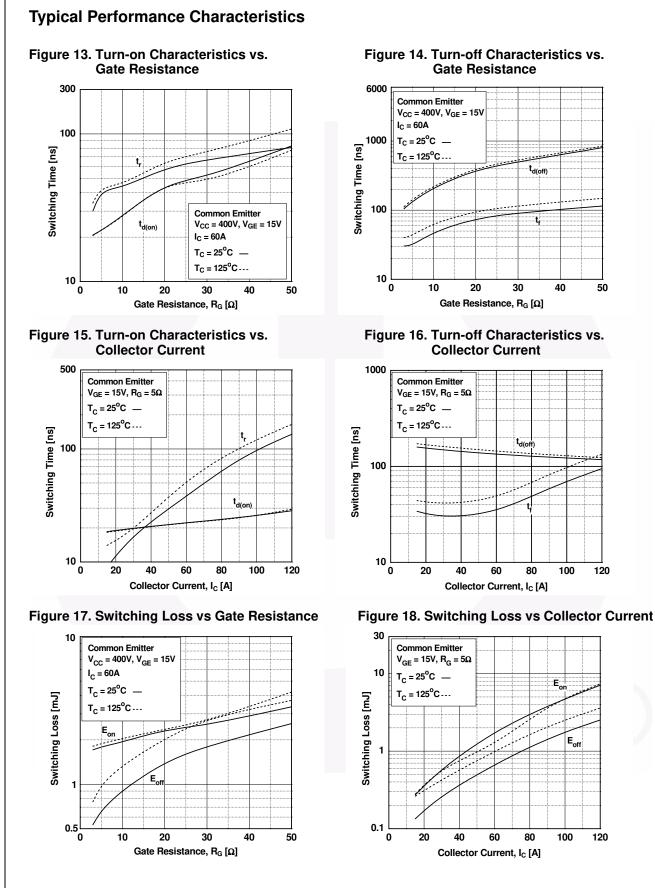


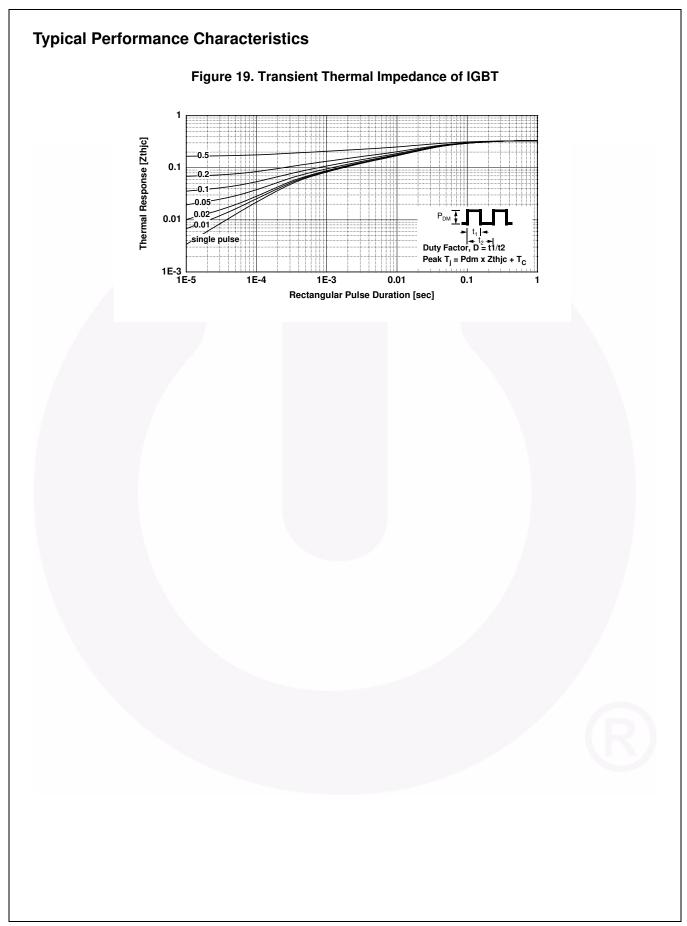
Figure 14. Turn-off Characteristics vs.

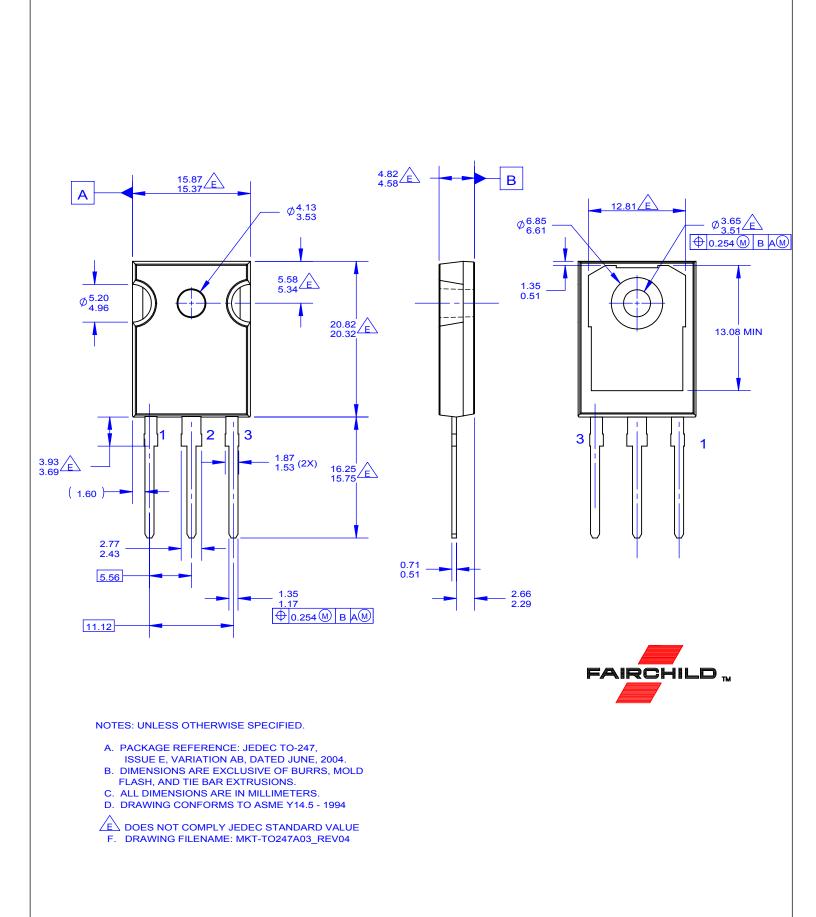
40

100

E,

E_{off}


100


120

120

50

©2008 Fairchild Semiconductor Corporation FGH60N60SF Rev. 1.4

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC