imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

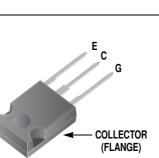
With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

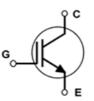
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

December 2008


FGH75N60SF 600V, 75A Field Stop IGBT


Features

- High Current Capability
- Low Saturation Voltage: V_{CE(sat)} =2.3V @ I_C = 75A
- High Input Impedance
- · Fast Switching
- RoHS Compliant

Applications

• Induction Heating, UPS, SMPS, PFC

Using Novel Field Stop IGBT Technology, Fairchild's new sesries of Field Stop IGBTs offer the optimum performance for

Induction Heating, UPS, SMPS and PFC applications where

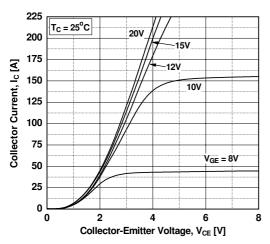
low conduction and switching losses are essential.

General Description

Absolute Maximum Ratings

Symbol	Description		Ratings	Units
V _{CES}	Collector to Emitter Voltage		600	V
V _{GES}	Gate to Emitter Voltage		± 20	V
I _C	Collector Current	@ T _C = 25°C	150	А
	Collector Current	@ T _C = 100°C	75	А
I _{CM (1)}	Pulsed Collector Current	@ T _C = 25°C	225	А
P _D	Maximum Power Dissipation	@ T _C = 25°C	452	W
	Maximum Power Dissipation	@ T _C = 100°C	181	W
TJ	Operating Junction Temperature		-55 to +150	°C
T _{stg}	Storage Temperature Range		-55 to +150	°C
TL	Maximum Lead Temp. for soldering Purposes, 1/8" from case for 5 seconds		300	°C

Notes: 1: Repetitive rating: Pulse width limited by max. junction temperature


Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Units	
$R_{\theta JC}(IGBT)$	Thermal Resistance, Junction to Case	-	0.276	°C/W	
R_{\thetaJA}	HeJA Thermal Resistance, Junction to Ambient		40	°C/W	

Device M	larking	Device P	ackage	Packaging	Otv pe	er Tube		x Qty
3		ackageTypeTO-247Tube)ea	per Box		
10175	10031		10-247	Tube	50	Jea	l	
Electric	al Char	acteristics of the I	GBT T _C = 25°C	C unless otherwise noted				
Symbol		Parameter	Test C	Conditions	Min.	Тур.	Max.	Units
Off Charac	teristics							
BV _{CES}	Collector	to Emitter Breakdown Voltage	$V_{GE} = 0V, I_{C} =$	= 250μA	600	-	-	V
ΔΒV _{CES} ΔΤ _J	Temperati Voltage	ure Coefficient of Breakdown	$V_{GE} = 0V, I_C =$		-	0.4	-	V/ºC
I _{CES}	Collector	Cut-Off Current	V _{CE} = V _{CES} , V	/ _{GE} = 0V	-	-	250	μA
I _{GES}	G-E Leak	age Current	$V_{GE} = V_{GES}, V_{CES}$		-	-	±400	nA
On Charac	toristics				1			
V _{GE(th)}	1	shold Voltage	I _C = 250μA, V	_{CE} = V _{GE}	4.0	5.0	6.5	V
		I _C = 75A, V _{GE}		-	2.3	2.9	V	
V _{CE(sat)}	Collector to Emitter Saturation Voltage		$I_{C} = 75A, V_{GE} = 15V,$ $T_{C} = 125^{\circ}C$		-	2.6	-	V
Dynamic C	haracteris	tics			-			ļ
C _{ies}	Input Cap				-	3850	-	pF
C _{oes}		apacitance	V _{CE} = 30V, V _{GE} = 0V, f = 1MHz		-	375	-	pF
C _{res}	Reverse 7	Fransfer Capacitance			-	147	-	pF
	0	- 11						
Switching	1		1		-	26		
t _{d(on)}	Rise Time	Turn-On Delay Time		_		26 58	-	ns
t _r		, Delay Time			-	138	-	ns ns
t _{d(off)} t _f	Fall Time			$V_{CC} = 400V, I_C = 75A, R_G = 3\Omega, V_{GE} = 15V,$		22	60	ns
ч E _{on}		Switching Loss	Inductive Load, T _C = 25°C		-	2.7	-	mJ
E _{off}		Switching Loss	-		-	1.0	-	mJ
E _{ts}		ching Loss	-		-	3.7	-	mJ
t _{d(on)}		Delay Time			-	25	-	ns
t _r	Rise Time		V _{CC} = 400V, I _C = 75A,		-	62	-	ns
t _{d(off)}	Turn-Off	Delay Time			-	138	-	ns
t _f	Fall Time		$R_G = 3\Omega, V_{GE}$	R _G = 3Ω, V _{GE} = 15V,		21	-	ns
E _{on}	Turn-On S	Switching Loss	Inductive Load, T _C = 125°C		-	3.2	-	mJ
E _{off}	Turn-Off S	Switching Loss	1		-	1.3	-	mJ
E _{ts}	Total Swit	ching Loss	1		-	4.5	-	mJ
Qg	Total Gate	e Charge			-	250	-	nC
Q _{ge}	Gate to E	mitter Charge	$V_{CE} = 400V, I_{CE}$	_C = 75A,	-	30	-	nC
Q _{gc}	Gata to C	ollector Charge	V _{GE} = 15V		_	130	-	nC

Typical Performance Characteristics

Figure 1. Typical Output Characteristics

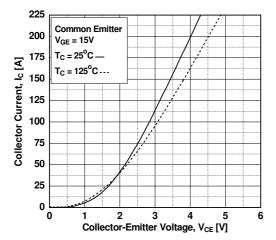


Figure 5. Saturation Voltage vs. Case Temperature at Variant Current Level

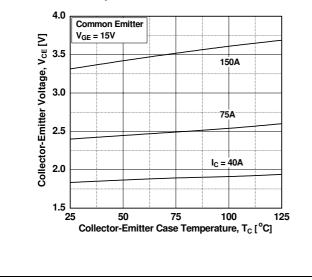
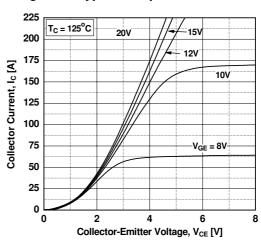



Figure 2. Typical Output Characteristics

Figure 4. Transfer Characteristics

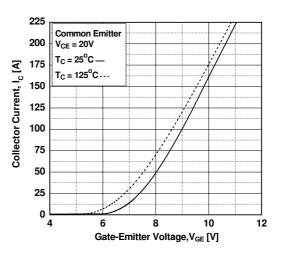
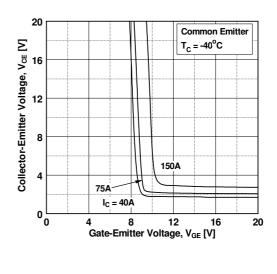



Figure 6. Saturation Voltage vs. V_{GE}

Typical Performance Characteristics

Figure 7. Saturation Voltage vs. $\rm V_{GE}$

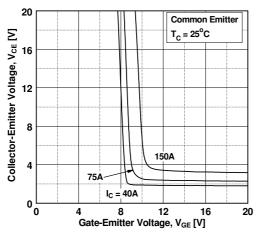
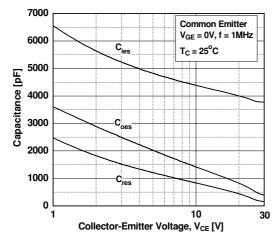



Figure 9. Capacitance Characteristics

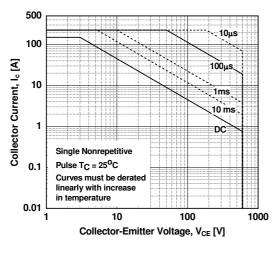
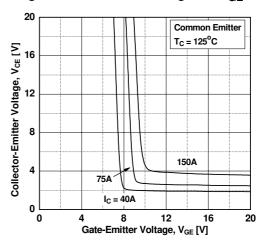
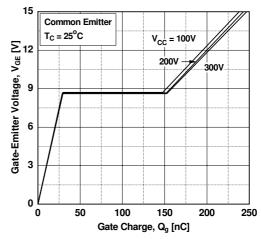
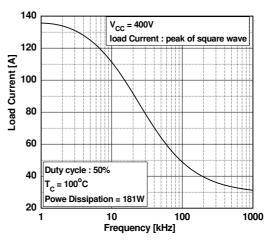
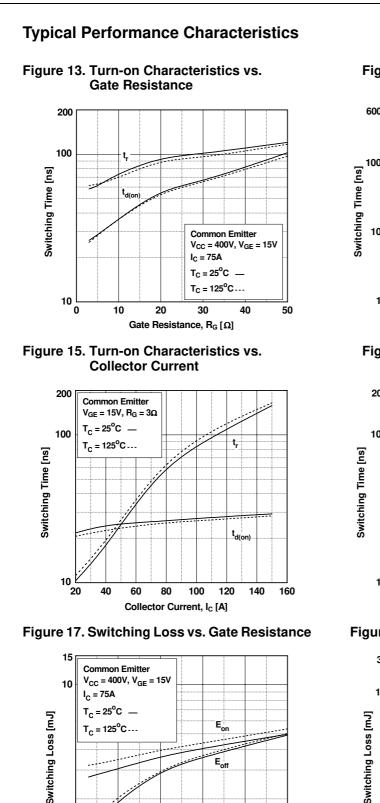
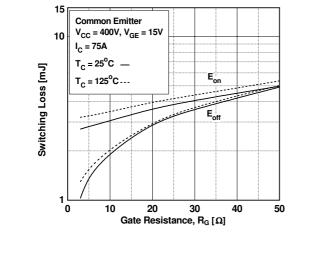
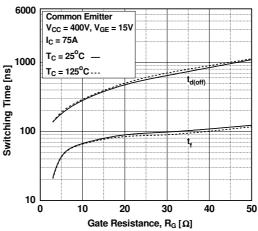
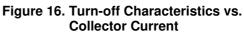


Figure 8. Saturation Voltage vs. V_{GE}


Figure 10. Gate charge Characteristics





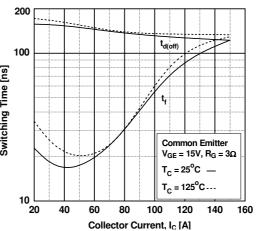
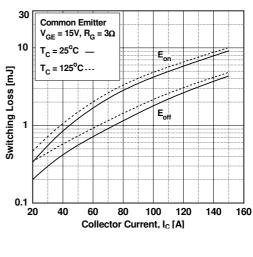
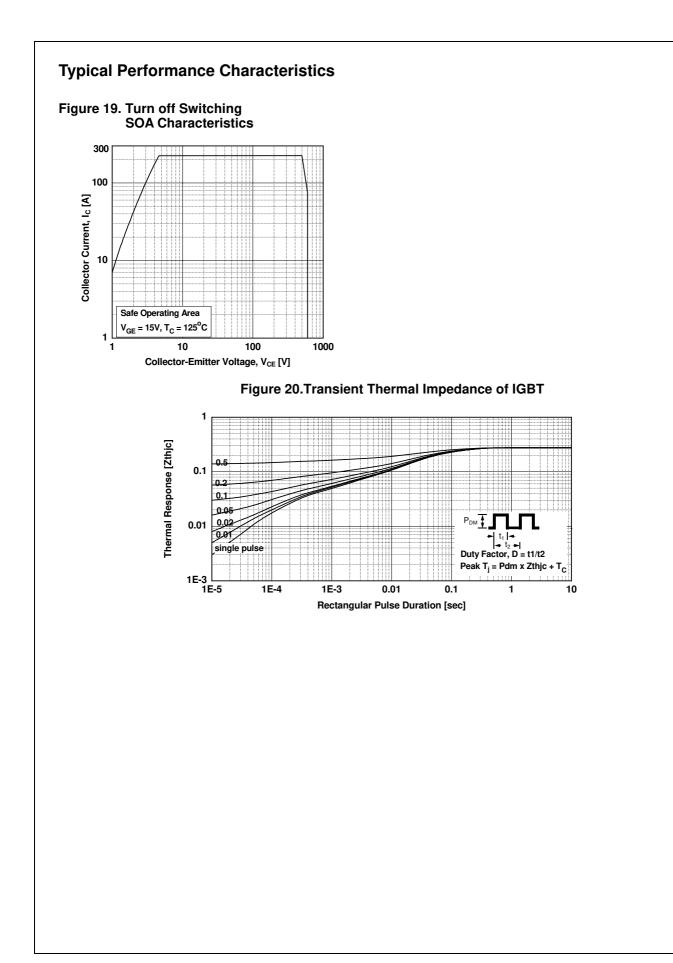
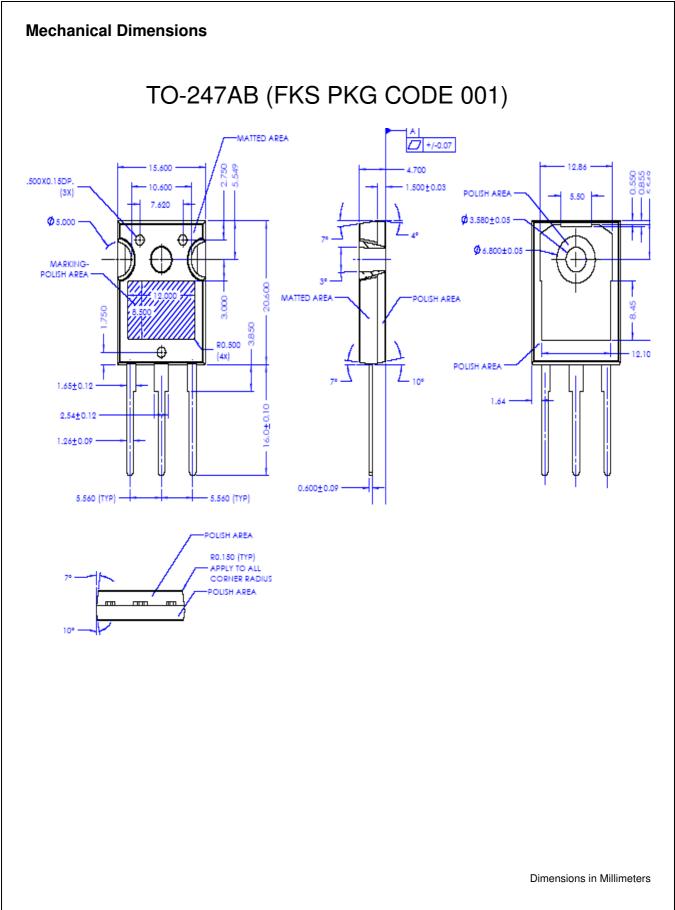





Figure 18. Switching Loss vs. Collector Current

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

Build it Now™	FRFET [®]	Programmable Active Droop™	the .
CorePLUS™	Global Power Resource SM	QFET®	power
CorePOWER™	Green FPS™	QS™	franchise
CROSSVOLT™	Green FPS™ e-Series™	Quiet Series™	TinyBoost™ TinyBuols™
CTL™	GTO™	RapidConfigure™	TinyBuck™ TinyLogic [®]
Current Transfer Logic™	IntelliMAX™		TINYOPTO™
EcoSPARK [®]	ISOPLANAR™	тм	TinyPower™
EfficentMax™	MegaBuck™	Saving our world, 1mW /W /kW at a time™	TinyPWM™
EZSWITCH™ *	MICROCOUPLER™	SmartMax™	TinyWire™
	MicroFET™	SMART START™	μSerDes™
	MicroPak™	SPM [®]	
8	MillerDrive™	STEALTH™	SerDes
Fairchild [®]	MotionMax™	SuperFET™	UHC®
Fairchild Semiconductor [®]	Motion-SPM™	SuperSOT™-3	
FACT Quiet Series™	OPTOLOGIC [®] OPTOPLANAR [®]	SuperSOT™-6	Ultra FRFET™ UniFET™
FACT Quiet Series FACT®		SuperSOT™-8	VCX™
FAST®		SupreMOS™ SyncFET™	VisualMax™
FastvCore™	U.		XS™
FlashWriter [®] *	PDP SPM™	SYSTEM ®	XO
FPS™	Power-SPM™	The Power Franchise [®]	
F-PFS™	PowerTrench®	The Fower Franchise*	
	PowerXS™		

* EZSWITCH™ and FlashWriter[®] are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Farichild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.