

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

FGL40N120AN 1200V NPT IGBT

Features

- · High speed switching
- Low saturation voltage : V_{CE(sat)} = 2.6 V @ I_C = 40A
- · High input impedance

Applications

Induction Heating, UPS, AC & DC motor controls and general purpose inverters.

Description

Employing NPT technology, Fairchild's AN series of IGBTs provides low conduction and switching losses. The AN series offers an solution for application such as induction heating (IH), motor control, general purpose inverters and uninterruptible power supplies (UPS).

Absolute Maximum Ratings

Symbol	Parameter		FGL40N120AN	Units
V _{CES}	Collector-Emitter Voltage		1200	V
V _{GES}	Gate-Emitter Voltage		±25	V
1	Collector Current	@T _C = 25°C	64	Α
IC	Collector Current	@T _C = 100°C	40	Α
I _{CM(1)}	Pulsed Collector Current		160	A
D	Maximum Power Dissipation	@T _C = 25°C	500	W
P_D	Maximum Power Dissipation	@T _C = 100°C	200	W
SCWT	Short Circuit Withstand Time, V _{CE} = 600V, V _{GE} = 15V, T _C = 125°C		10	μ\$
T _J	Operating Junction Temperature		-55 to +150	°C
T _{STG}	Storage Temperature Range		-55 to +150	°C
TL	Maximum Lead Temp. for Soldering Purposes, 1/8" from Case for 5 seconds		300	°C

Notes:

(1) Pulse width limited by max. junction temperature

Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Units
$R_{\theta JC}(IGBT)$	Thermal Resistance, Junction-to-Case		0.25	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient		25	°C/W

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FGL40N120AN	FGL40N120AN	TO-264	=	=	25

Electrical Characteristics of the IGBT $T_C = 25^{\circ}\text{C}$ unless otherwise noted

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
Off Charact	teristics					
BV _{CES}	Collector-Emitter Breakdown Voltage	$V_{GE} = 0V$, $I_{C} = 1mA$	1200			V
BV _{CES} / ΔT _J	Temperature Coefficient of Breakdown Voltage	V _{GE} = 0V, I _C = 1mA		0.6		V/°C
I _{CES}	Collector Cut-Off Current	$V_{CE} = V_{CES}, V_{GE} = 0V$			1	mA
I _{GES}	G-E Leakage Current	$V_{GE} = V_{GES}, V_{CE} = 0V$			±250	nA
On Charact	eristics					
V _{GE(th)}	G-E Threshold Voltage	$I_{C} = 250 \mu A, V_{CE} = V_{GE}$	3.5	5.5	7.5	V
GE(III)	1 11 11 11 11 11 11	$I_C = 40A, V_{GE} = 15V$		2.6	3.2	V
V _{CE(sat)}	Collector to Emitter Saturation Voltage	I _C = 40A, V _{GE} = 15V, T _C = 125°C		2.9		V
	_	I _C = 64A, V _{GE} = 15V		3.15		V
Dynamic C	haracteristics			l	l	J
C _{ies}	Input Capacitance			3200		pF
C _{oes}	Output Capacitance	V _{CE} = 30V, V _{GE} = 0V f = 1MHz		370		pF
C _{res}	Reverse Transfer Capacitance	_ I = IIVI⊓Z		125		pF
Switching (Characteristics	,				
$t_{d(on)}$	Turn-On Delay Time			15		ns
t _r	Rise Time			20		ns
$t_{d(off)}$	Turn-Off Delay Time	$V_{CC} = 600V, I_{C} = 40A,$		110		ns
t _f	Fall Time	$R_G = 5\Omega$, $V_{GE} = 15V$,		40	80	ns
E _{on}	Turn-On Switching Loss	Inductive Load, T _C = 25°C		2.3	3.45	mJ
E _{off}	Turn-Off Switching Loss			1.1	1.65	mJ
E_ts	Total Switching Loss		-	3.4	5.1	mJ
$t_{d(on)}$	Turn-On Delay Time		-	20		ns
t _r	Rise Time			25		ns
۲r		V 600V I 40A			1	
t _{d(off)}	Turn-Off Delay Time	$V_{CC} = 600 \text{V}$, $I_{C} = 40 \text{A}$.		120		ns
$t_{\text{d(off)}}$	Turn-Off Delay Time Fall Time	$V_{CC} = 600V, I_{C} = 40A,$ $R_{G} = 5\Omega, V_{GE} = 15V,$		120 45		ns ns
$t_{d(off)}$ t_{f}	-			_		
$t_{d(off)}$ t_{f} E_{on}	Fall Time	$R_G = 5\Omega$, $V_{GE} = 15V$,		45		ns
	Fall Time Turn-On Switching Loss	$R_G = 5\Omega$, $V_{GE} = 15V$,		45 2.5		ns mJ
$\begin{aligned} &t_{d(off)} \\ &t_{f} \\ &E_{on} \\ &E_{off} \end{aligned}$	Fall Time Turn-On Switching Loss Turn-Off Switching Loss	$R_G = 5\Omega$, $V_{GE} = 15V$, Inductive Load, $T_C = 125^{\circ}C$		45 2.5 1.8		ns mJ mJ
$\begin{aligned} & t_{d(off)} \\ & t_{f} \\ & E_{on} \\ & E_{off} \\ & E_{ts} \end{aligned}$	Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss	$R_G = 5\Omega$, $V_{GE} = 15V$,		45 2.5 1.8 4.3	 	ns mJ mJ

Typical Performance Characteristics

Figure 1. Typical Output Characteristics

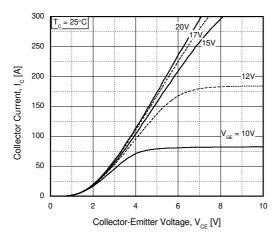


Figure 3. Saturation Voltage vs. Case
Temperature at Variant Current Level

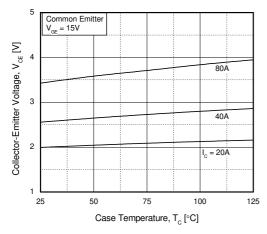


Figure 5. Saturation Voltage vs. V_{GE}

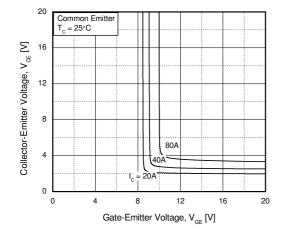


Figure 2. Typical Saturation Voltage Characteristics

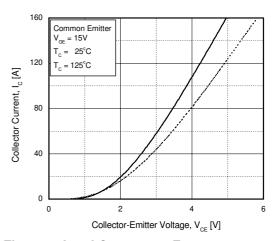


Figure 4. Load Current vs. Frequency

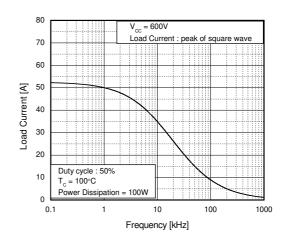
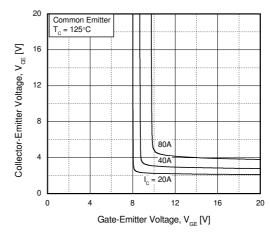



Figure 6. Saturation Voltage vs. V_{GE}

Typical Performance Characteristics (Continued)

Figure 7. Capacitance Characteristics

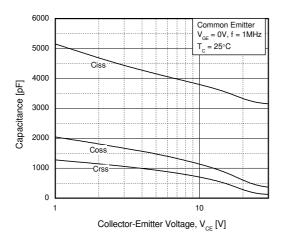


Figure 9. Turn-Off Characteristics vs. Gate Resistance

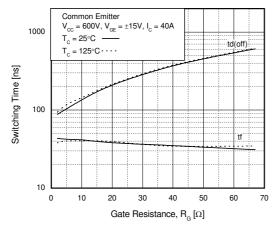


Figure 11. Turn-On Characteristics vs. Collector Current

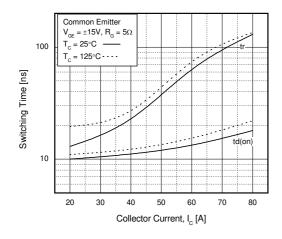


Figure 8. Turn-On Characteristics vs. Gate Resistance

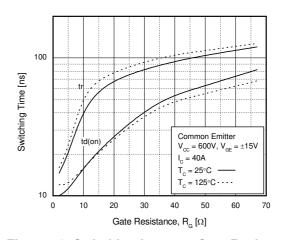


Figure 10. Switching Loss vs. Gate Resistance

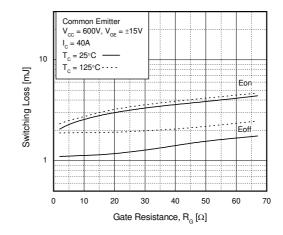
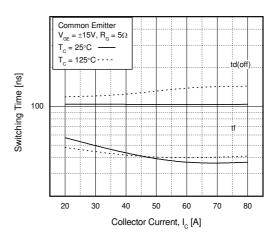



Figure 12. Turn-Off Characteristics vs. Collector Current

Typical Performance Characteristics (Continued)

Figure 13. Switching Loss vs. Collector Current

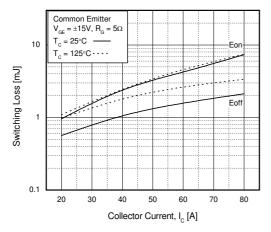


Figure 14. Gate Charge Characteristics

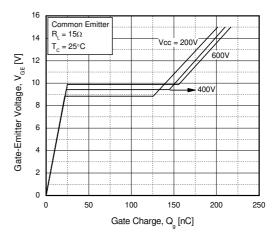


Figure 15. SOA Characteristics

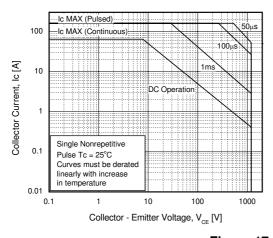
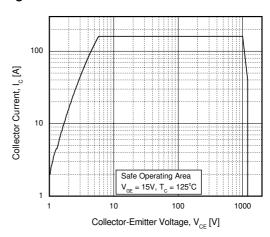
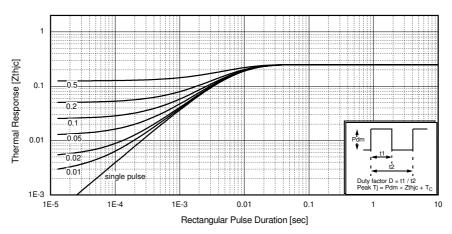
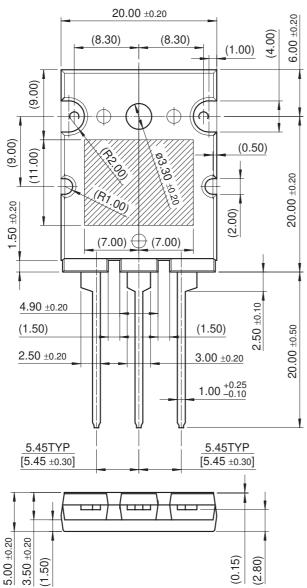
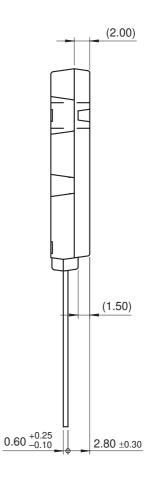


Figure 16. Turn-Off SOA


Figure 17. Transient Thermal Impedance of IGBT

Mechanical Dimensions

TO-264

(0.15)

TRADEMARKS

The following are registered and unregistered trademarks and service marks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx® Build it Now™ CorePLUS™ CROSSVOLT™ CTL™ Current Transfer Logic™ EcoSPARK® FACT Quiet Series™ FACT® FAST® FastvCore™ FPS™ FRFET® Global Power Resource™	Green FPS™ e-Series™ GTO™ i-Lo™ i-Lo™ IntelliMAX™ ISOPLANAR™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ Motion-SPM™ OPTOLOGIC® OPTOPLANAR® PDP-SPM™ Power220® Power247®	POWEREDGE® Power-SPM™ PowerTrench® Programmable Active Droop™ QFET® QS™ QT Optoelectronics™ Quiet Series™ RapidConfigure™ SMART START™ SPM® STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT™-6	SuperSOT™-8 SyncFET™ The Power Franchise® TinyBoost™ TinyBuck™ TinyLogic® TINYOPTO™ TinyPower™ TinyPWM™ TinyPWM™ TinyWire™ µSerDes™ UHC® UniFET™ VCX™
--	--	--	---

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- 1. Life support devices or systems are devices or systems 2. A critical component in any component of a life support, which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed Full Production		This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.

Rev. I29