## : ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!


## Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

## NPT ${ }^{3}$ IGBT phaseleg

in ISOPLUS i4-PAC ${ }^{\text {M }}$

| $\mathrm{I}_{\mathrm{C} 25}$ | $=50 \mathrm{~A}$ |
| :--- | :--- |
| $\mathrm{~V}_{\mathrm{CES}}$ | $=1200 \mathrm{~V}$ |
| $\mathrm{~V}_{\mathrm{CE}(\text { (sat) typ. }}$ | $=\mathbf{2 . 0} \mathrm{V}$ |



| IGBTs |  |  |  |
| :---: | :---: | :---: | :---: |
| Symbol | Conditions | Maximum Ratings |  |
| $\mathrm{V}_{\text {CES }}$ | $\mathrm{T}_{\mathrm{vJ}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ | 1200 | V |
| $\mathrm{V}_{\text {GES }}$ |  | $\pm 20$ | V |
| $\mathrm{I}_{\mathrm{C} 25}$ | $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ | 50 | A |
| $\mathrm{I}_{\text {c90 }}$ | $\mathrm{T}_{\mathrm{C}}=90^{\circ} \mathrm{C}$ | 32 | A |
| $\mathrm{I}_{\mathrm{cm}}$ ( | $\mathrm{V}_{\mathrm{GE}}= \pm 15 \mathrm{~V} ; \mathrm{R}_{\mathrm{G}}=39 \Omega ; \mathrm{T}_{\mathrm{VJ}}=125^{\circ} \mathrm{C}$ | 50 | A |
| $\mathrm{V}_{\text {CEK }}$ 仡 | RBSOA, Clamped inductive load; $\mathrm{L}=100 \mu \mathrm{H}$ | $\mathrm{V}_{\text {CES }}$ |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{sc}} \\ & \text { (SCSOA) } \end{aligned}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=900 \mathrm{~V} ; \mathrm{V}_{\mathrm{GE}}= \pm 15 \mathrm{~V} ; \mathrm{R}_{\mathrm{G}}=39 \Omega ; \mathrm{T}_{\mathrm{VJ}}=125^{\circ} \mathrm{C} \\ & \text { non-repetitive } \end{aligned}$ | 10 | $\mu \mathrm{s}$ |
| $\mathrm{P}_{\text {tot }}$ | $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ | 200 | W |


| Symbol | Conditions <br> Characteristic Values ( $T_{V J}=25^{\circ} \mathrm{C}$, unless otherwise specified) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {CE(sat) }}$ | $\begin{array}{r} \mathrm{I}_{\mathrm{C}}=30 \mathrm{~A} ; \mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V} ; \mathrm{T}_{\mathrm{VJ}}=25^{\circ} \mathrm{C} \\ \mathrm{~T}_{\mathrm{VJ}}=125^{\circ} \mathrm{C} \end{array}$ |  | $\begin{aligned} & 2.0 \\ & 2.3 \end{aligned}$ | 2.6 | V |
| $\mathrm{V}_{\text {GE(th) }}$ | $\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{GE}}=\mathrm{V}_{\mathrm{CE}}$ | 4.5 |  | 6.5 | V |
| $\mathrm{I}_{\text {CES }}$ | $\begin{array}{r} \mathrm{V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{CES}} ; \mathrm{V}_{\mathrm{GE}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{VJ}}=25^{\circ} \mathrm{C} \\ \mathrm{~T}_{\mathrm{VJ}}=125^{\circ} \mathrm{C} \end{array}$ |  | 0.4 | 0.4 | mA mA |
| $\underline{\mathrm{I}}$ GES | $\mathrm{V}_{\mathrm{CE}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{GE}}= \pm 20 \mathrm{~V}$ |  |  | 200 | nA |
| $\begin{aligned} & \mathbf{t}_{\mathrm{t}_{\text {(on) }}} \\ & \mathrm{t}_{\mathrm{r}} \\ & \mathrm{t}_{\text {doff) }} \\ & \mathrm{t}_{\mathrm{f}} \\ & \mathrm{E}_{\mathrm{on}} \\ & \mathrm{E}_{\mathrm{off}} \end{aligned}$ | , ${ }^{\text {Inductive load, } T_{V J}=125^{\circ} \mathrm{C}} \begin{aligned} & \text { Ind } \\ & \mathrm{V}_{\mathrm{CE}}=600 \mathrm{~V} ; \mathrm{I}_{\mathrm{C}}=30 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{GE}}= \pm 15 \mathrm{~V} ; \mathrm{R}_{\mathrm{G}}=39 \Omega\end{aligned}$ |  | $\begin{array}{r} 85 \\ 50 \\ 440 \\ 50 \\ 4.6 \\ 2.2 \end{array}$ |  | ns ns ns ns mJ mJ |
| $\begin{aligned} & \mathbf{C}_{\text {ies }} \\ & \mathbf{Q}_{\text {Gon }} \end{aligned}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=25 \mathrm{~V} ; \mathrm{V}_{\mathrm{GE}}=0 \mathrm{~V} ; f=1 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{CE}}=600 \mathrm{~V} ; \mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V} ; \mathrm{I}_{\mathrm{C}}=30 \mathrm{~A} \end{aligned}$ |  | $\begin{array}{r} 2 \\ 250 \end{array}$ |  | ${ }_{\mathrm{nC}}$ |
| $\begin{aligned} & \mathbf{R}_{\mathrm{th} \mathrm{Jc}} \\ & \mathbf{R}_{\mathrm{th} \mathrm{hH}} \end{aligned}$ | with heatsink compound |  | 1.2 | 0.6 | KWW |



## Features

- $\mathrm{NPT}^{3}$ IGBT
- low saturation voltage
- positive temperature coefficient for easy paralleling
- fast switching
- short tail current for optimized performance in resonant circuits
- HiPerFRED ${ }^{\text {TM }}$ diode
- fast reverse recovery
- low operating forward voltage
- low leakage current
- ISOPLUS i4-PAC ${ }^{\text {TM }}$ package
- isolated back surface
- enlarged creepage towards heatsink
- application friendly pinout
- low inductive current path
- high reliability
- industry standard outline
- UL registered, E 72873


## Applications

- single phaseleg
- buck-boost chopper
- H bridge
- power supplies
- induction heating
- four quadrant DC drives
- controlled rectifier
- three phase bridge
- AC drives
- controlled rectifier

| Diodes |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Symbol | Conditions | Maximum Ratings |  |  |
| $\mathrm{I}_{\text {F25 }}$ | $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ | 48 A |  |  |
| $\mathrm{I}_{\text {F90 }}$ | $\mathrm{T}_{\mathrm{C}}=90^{\circ} \mathrm{C}$ | 25 A |  |  |
| Symbol | Conditions | Characteristic Values min. typ. max. |  |  |
| $\mathrm{V}_{\mathrm{F}}$ | $\begin{aligned} & \mathrm{I}_{\mathrm{F}}=30 \mathrm{~A} ; \mathrm{T}_{\mathrm{VJ}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{VJ}}=125^{\circ} \mathrm{C} \end{aligned}$ |  | $\begin{aligned} & 2.4 \\ & 1.8 \end{aligned}$ | $\begin{array}{ll} 2.8 \mathrm{~V} \\ & \mathrm{~V} \end{array}$ |
| $\begin{aligned} & \mathbf{I}_{\mathrm{RM}} \\ & \mathbf{t}_{\mathrm{rr}} \\ & \mathrm{E}_{\text {rec(off) }} \end{aligned}$ | $\left\{\begin{array}{l} \mathrm{I}_{\mathrm{F}}=30 \mathrm{~A} ; \mathrm{di}_{F} / \mathrm{dt}=-1100 \mathrm{~A} / \mu \mathrm{s} ; \mathrm{T}_{\mathrm{VJ}}=125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{R}}=600 \mathrm{~V} ; \mathrm{V}_{\mathrm{GE}}=0 \mathrm{~V} \end{array}\right.$ |  | $\begin{array}{r} 51 \\ 180 \\ 1.8 \end{array}$ | $\begin{gathered} \mathrm{A} \\ \mathrm{~ns} \\ \mathrm{~mJ} \end{gathered}$ |
| $\begin{aligned} & \mathbf{R}_{\mathrm{th} \mathrm{hc}} \\ & \mathbf{R}_{\mathrm{thhs}} \\ & \hline \end{aligned}$ | (per diode) |  | 1.6 | $\begin{aligned} & \text { 1.3 KW } \\ & \text { KW } \end{aligned}$ |
| Component |  |  |  |  |
| Symbol | Conditions | Maximum Ratings |  |  |
| $\begin{aligned} & \mathrm{T}_{\mathrm{vj}} \\ & \mathrm{~T}_{\mathrm{stg}} \end{aligned}$ |  | $\begin{aligned} & -55 \ldots+150 \\ & -55 \ldots+125 \end{aligned}$ |  | $\circ$ <br>  <br> ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{V}_{\text {ISOL }}$ | $\mathrm{I}_{\text {ISoL }} \leq 1 \mathrm{~mA} ; 50 / 60 \mathrm{~Hz}$ | 2500 V~ |  |  |
| $\mathrm{F}_{\mathrm{c}}$ | mounting force with clip | 20... 120 |  | N |
| Symbol | Conditions | Characteristic Values min. ${ }^{\text {typ. }}$ max. |  |  |
|  |  |  |  |  |
| $\mathrm{d}_{\text {S }}, \mathrm{d}_{\mathrm{A}}$ | pin - pin | 1.7 |  | mm |
| $\mathrm{d}_{\text {S }}, \mathrm{d}_{\mathrm{A}}$ | pin - backside metal | 5.5 |  | mm |
| Weight |  |  | 9 | g |



Dimensions in $\mathrm{mm}\left(1 \mathrm{~mm}=0.0394^{\prime \prime}\right)$
Equivalent Circuits for Simulation

## Conduction



IGBT (typ. at $\mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V} ; \mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$ )
$V_{0}=0.95 \mathrm{~V} ; R_{0}=45 \mathrm{~m} \Omega$
Diode (typ. at $\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$ )

$$
V_{0}=1.26 \mathrm{~V} ; R_{0}=15 \mathrm{~m} \Omega
$$

## Thermal Response



IGBT
$C_{t h 1}=0.067 \mathrm{~J} / \mathrm{K} ; R_{t h 1}=0.108 \mathrm{~K} / \mathrm{W}$
$C_{t h 2}=0.175 \mathrm{~J} / \mathrm{K} ; R_{t h 2}=0.491 \mathrm{~K} / \mathrm{W}$
Diode
$C_{t h 1}=0.039 \mathrm{~J} / \mathrm{K} ; R_{t h 1}=0.337 \mathrm{~K} / \mathrm{W}$
$C_{t h 2}=0.090 \mathrm{~J} / \mathrm{K} ; R_{t h 2}=0.963 \mathrm{~K} / \mathrm{W}$




Fig. 1 Typ. output characteristics


Fig. 3 Typ. transfer characteristics


Fig. 5 Typ. turn on gate charge


Fig. 2 Typ. output characteristics


Fig. 4 Typ. forward characteristics of free wheeling diode


Fig. 6 Typ. transient thermal impedance


Fig. 7 Typ. turn on energy and switching times versus collector current


Fig. 9 Typ. turn on energy and switching times versus gate resistor


Fig. 11 Typ. turn off characteristics of free wheeling diode


Fig. 8 Typ. turn off energy and switching times versus collector current


Fig. 10 Typ. turn off energy and switching times versus gate resistor


Fig. 12 Typ. turn off characteristics of free wheeling diode

