imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

February 2002 Revised February 2002

FIN1002 LVDS 1-Bit High Speed Differential Receiver

General Description

FAIRCHILD

SEMICONDUCTOR

This single receiver is designed for high speed interconnects utilizing Low Voltage Differential Signaling (LVDS) technology. The receiver translates LVDS levels, with a typical differential input threshold of 100 mV, to LVTTL signal levels. LVDS provides low EMI at ultra low power dissipation even at high frequencies. This device is ideal for high speed transfer of clock or data.

The FIN1002 can be paired with its companion driver, the FIN1001, or with any other LVDS driver.

Features

- Greater than 400Mbs data rate
- 3.3V power supply operation
- 0.4ns maximum pulse skew
- 2.5ns maximum propagation delay
- Bus pin ESD (HBM) protection exceeds 10kV
- Power-Off over voltage tolerant input and output
- Fail safe protection for open-circuit and non-driven, shorted or terminated conditions
- \blacksquare High impedance output at $V_{CC} < 1.5 V$
- Meets or exceeds the TIA/EIA-644 LVDS standard
- 5-Lead SOT23 package saves space

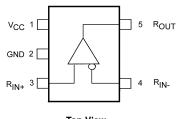
Ordering Code:

Order Number	Package Number	Package Description			
FIN1002M5	MA05B	5-Lead SOT23, JEDEC MO-178, 1.6mm [250 Units on Tape and Reel]			
FIN1002M5X	MA05B	5-Lead SOT23, JEDEC MO-178, 1.6mm [3000 Units on Tape and Reel]			

Pin Descriptions

Pin Name	Description
R _{OUT}	LVTTL Data Output
R _{IN+}	Non-inverting Driver Input
R _{IN-}	Inverting Driver Input
V _{CC}	Power Supply
GND	Ground
NC	No Connect

Function Table


In	put	Outputs
R _{IN+}	R _{IN-}	R _{OUT}
L	Н	L
Н	L	Н
Fail Safe	Condition	Н

H = HIGH Logic Level L = LOW Logic Level

Fail Safe = Open, Shorted, Terminated

Connection Diagram

Pin Assignment for SOT package

Top View

© 2002 Fairchild Semiconductor Corporation DS500730

www.fairchildsemi.com

Absolute Maximum Ratings(Note 1)

Supply Voltage (V _{CC})	-0.5V to +4.6V
DC Input Voltage (R _{IN+} , R _{IN-})	-0.5V to +4.6V
DC Output Voltage (D _{OUT})	-0.5V to +6V
DC Output Current (I _O)	16 mA
Storage Temperature Range (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$
Max Junction Temperature (T _J)	150°C
Lead Temperature (TL)	
(Soldering, 10 seconds)	260°C

Recommended	Operating
Conditions	

Supply Voltage (V _{CC})	3.0V to 3.6V
Input Voltage (V _{IN})	0 to V _{CC}
Magnitude of Differential	
Voltage (V _{ID})	100mV to V _{CC}
Common-mode Input	
Voltage (V _{IC})	$(0V+ V_{\text{ID}} $ /2) to $(2.4- V_{\text{ID}} /2)$
Operating Temperature (T _A)	-40°C to +85°C
ESD (Human Body Model)	
All Pins	8kV
LVDS pins to GND	10kV
ESD (Machine Model)	400V

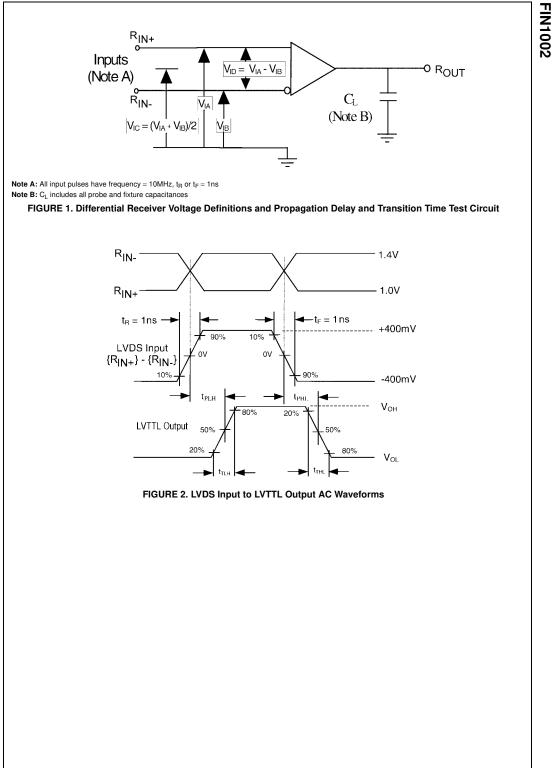
Note 1: The "Absolute Maximum Ratings": are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature and output/input loading variables. Fairchild does not recommend operation of circuits outside databook specification.

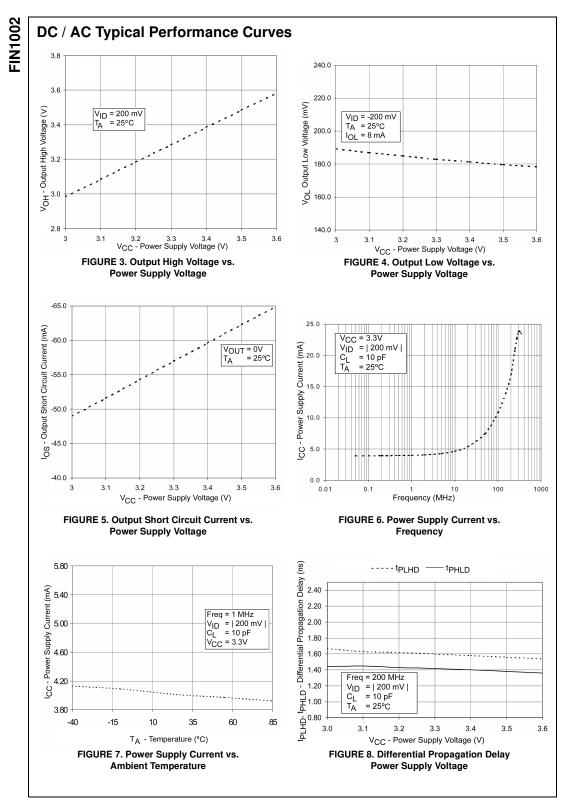
DC Electrical Characteristics

Over supply voltage and operating temperature ranges, unless otherwise specified

Symbol	Parameter	Test Conditions	Min	Typ (Note 2)	Мах	Units
V _{TH}	Differential Input Threshold HIGH	See Figure 1; $V_{IC} = +0.05V$, 1.2V, or 2.35V			100	mV
V _{TL}	Differential Input Threshold LOW	See Figure 1; $V_{IC} = +0.05V$, 1.2V, or 2.35V	-100			mV
I _{IN}	Input Current	$V_{IN} = 0V \text{ or } V_{CC}$			±20	μA
I _{I(OFF)}	Power-OFF Input Current	$V_{CC} = 0V, V_{IN} = 0V \text{ or } 3.6V$			±20	μΑ
V _{OH} C	Output HIGH Voltage	$I_{OH} = -100 \ \mu A$	$V_{CC} - 0.2$	3.3		V
		I _{OH} = -8 mA	2.4	3.1		
V _{OL}	Output LOW Voltage	I _{OH} = 100 μA		0.0	0.2	v
		I _{OL} = 8 mA		0.16	0.5	v
V _{IK}	Input Clamp Voltage	I _{IK} = -18 mA	-1.5	0.8		V
ICC	Power Supply Current	$(R_{IN+} = 1V \text{ and } R_{IN-} = 1.4V), \text{ or}$ $(R_{IN+} = 1.4V \text{ and } R_{IN-} = 1V)$		4	7	mA
CIN	Input Capacitance	V _{CC} = 3.3V		2.3		pF
C _{OUT}	Output Capacitance	$V_{CC} = 0V$		2.8		pF

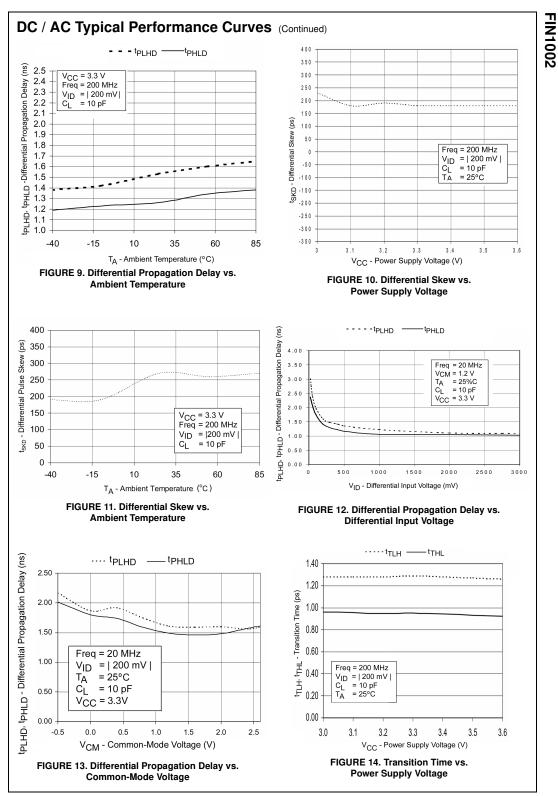
Note 2: All typical values are at $T_{A}=25^{\circ}C$ and with $V_{CC}=3.3V.$

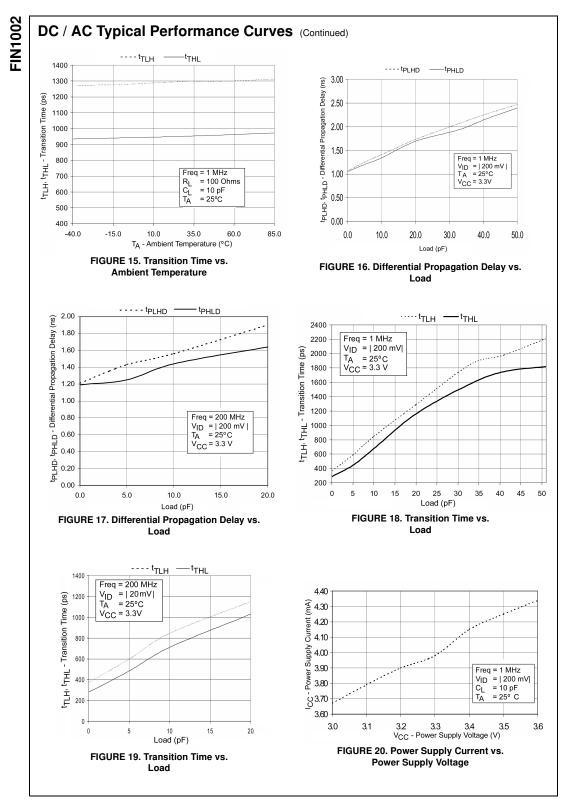

AC Electrical Characteristics


Over supply voltage and operating temperature ranges, unless otherwise specified

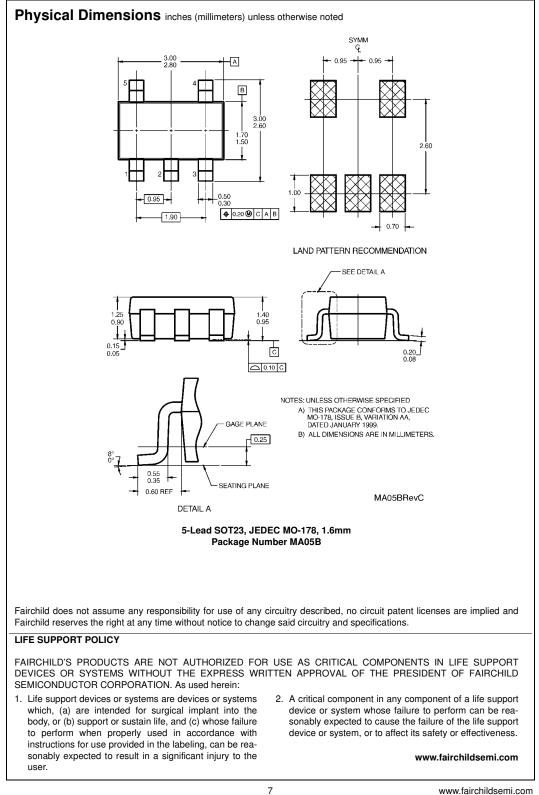
Symbol	Parameter	Test Conditions	Min	Typ (Note 3)	Мах	Units
t _{PLH}	Propagation Delay LOW-to-HIGH		0.9	1.5	2.5	ns
t _{PHL}	Propagation Delay HIGH-to-LOW		0.9	1.5	2.5	ns
t _{TLH}	Output Rise Time (20% to 80%)	$ V_{ID} = 400 \text{ mV}, C_L = 10 \text{ pF}$ See Figure 1 and Figure 2		0.6		ns
t _{THL}	Output Fall Time (80% to 20%)			0.5		ns
t _{SK(P)}	Pulse Skew t _{PLH} - t _{PHL}			0.02	0.4	ns
t _{SK(PP)}	Part-to-Part Skew (Note 4)				1.0	ns

Note 3: All typical values are at T_A = 25°C and with V_{CC} = 3.3V.


Note 4: t_{SK(PP)} is the magnitude of the difference in propagation delay times between any specified terminals of two devices switching in the same direction (either LOW-to-HIGH or HIGH-to-LOW) when both devices operate with the same supply voltage, same temperature, and have identical test circuits.


www.fairchildsemi.com

4


5

www.fairchildsemi.com

www.fairchildsemi.com

6

FIN1002 LVDS 1-Bit High Speed Differential Receiver