: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

FIN1215／FIN1216／FIN1217 FIN1218 LVDS 21－Bit Serializers／De－Serializers

Features

－Low Power Consumption
－ 20 MHz to 85 MHz Shift Clock Support
－ 50% Duty Cycle on the Clock Output of Receiver
－$\pm 1 \mathrm{~V}$ Common－mode Range $\sim 1.2 \mathrm{~V}$
－Narrow Bus Reduces Cable Size and Cost
－High Throughput：1．785Gbps
－Up to 595Mbps per Channel
－Internal PLL with No External Components
－Compatible with TIA／EIA－644 Specification
－Offered in 48－lead TSSOP Packages

Description

The FIN1217 and FIN1215 transform 21－bit wide parallel LVTTL（Low－Voltage TTL）data into three serial LVDS（Low－Voltage Differential Signaling）data streams．A phase－locked transmit clock is transmitted in parallel with the data stream over a separate LVDS link． Every cycle of transmit clock， 21 bits of input LVTTL data are sampled and transmitted．
The FIN1218 and FIN1216 receive and convert the three serial LVDS data streams back into 21 bits of LVTTL data．Table 1 provides a matrix summary of the serializers and de－serializers available．For the FIN1217，at a transmit clock frequency of $85 \mathrm{MHz}, 21$ bits of LVTTL data are transmitted at a rate of 595 Mbps per LVDS channel．

These chipsets solve EMI and cable size problems associated with wide and high－speed TTL interfaces．

Ordering Information

Part Number	Operating Temperature Range	Package	Packing Method
FIN1215MTDX	-40 to $+85^{\circ} \mathrm{C}$	48 －Lead Thin Shrink Small Outline Package（TSSOP）	Tape and Reel
FIN1216MTDX	-40 to $+85^{\circ} \mathrm{C}$	48 －Lead Thin Shrink Small Outline Package（TSSOP）	Tape and Reel
FIN1217MTD	-40 to $+85^{\circ} \mathrm{C}$	48 －Lead Thin Shrink Small Outline Package（TSSOP）	Trays
FIN1217MTDX	-40 to $+85^{\circ} \mathrm{C}$	48 －Lead Thin Shrink Small Outline Package（TSSOP）	Tape and Reel
FIN1218MTDX	-40 to $+85^{\circ} \mathrm{C}$	48 －Lead Thin Shrink Small Outline Package（TSSOP）	Tape and Reel

All packages are lead free per JEDEC：J－STD－020B standard．

Block Diagrams

Figure 1. FIN1217 / FIN1215 Transmitter Functional Diagram

Figure 2. FIN1218 / FIN1216 Transmitter Functional Diagram
Table 1. Serializers / De-Serializers Chip Matrix

Part	CLK Frequency	LVTTL IN	LVDS OUT	LVDS IN	LVTTL OUT	Package
FIN1215	66	21	3			48 -Lead TSSOP
FIN1216	66			3	21	48 -Lead TSSOP
FIN1217	85	21	3			48 -Lead TSSOP
FIN1218	85			3	21	48 -Lead TSSOP

Transmitters

Pin Configuration

TxIn 4 - 1	48	- Txin3
$\mathrm{v}_{\mathrm{CC}}-2$	47	- Txin 2
Tx $\ln 5-3$	46	GND
Txin $6-4$	45	- Txin 1
GND - 5	44	- Txin 0
Tx $\ln 7-6$	43	- NC
Tx $\ln 8$ - 7	42	- LVDS GND
$v_{\text {CC }}-8$	41	- TxOut0-
Txin9 -9	40	- TxOut $0+$
Tx $\ln 10-10$	39	- TxOut 1 -
GND - 11	38	- TxOut ${ }^{+}$
Txin $11-12$	37	- LVDS VCC
Tx $\ln 12-13$	36	- LVDS GND
VCC - 14	35	- TxOut2-
Tx $\ln 13-15$	34	- TxOut2+
Tx $\ln 14-16$	33	- TxCLK Out -
GND - 17	32	- TxCLK Out +
Txin $15-18$	31	- LVDS GND
Txin $16-19$	30	- PLL GND
Txin $17-20$	29	- PLL VCC
VCC - 21	28	- PLL GND
Tx $\ln 18-22$	27	- PwrDn
Tx $\ln 19-23$	26	- TxCLKIn
GND - 24	25	- Txin 20

Figure 3. FIN1217 / FIN1215 (21:3 Transmitter)

Pin Definitions

Pin Names	I/O Type	\# of Pins	Description of Signals
TxIn	I	21	LVTTL Level Inputs
TxCKLIn	I	1	LVTTL Level Clock Input; the rising edge is for data strobe
TxOut+	O	3	Positive LVDS Differential Data Output
TxOut	O	3	Negative LVDS Differential Data Output
TxCLKOut+	O	1	Positive LVDS Differential Clock Output
TxCLKOut-	O	1	Negative LVDS Differential Clock Output
/PwrDn	I	1	LVTTL Level Power-Down Input; assertion (LOW) puts the outputs in high- impedance state
PLL V VC	I	1	Power Supply Pin for LVDS Outputs
PLL GND	I	2	Ground Pins for PLL
LVDS VCC	I	1	Power Supply Pins for LVDS Outputs
LVDS GND	I	3	Ground Pin for LVDS Outputs
VCC	I	4	Power Supply Pins for LVTTL Inputs
GND	I	5	Ground Pins for LVTTL Inputs
NC			No Connect

Receivers

Pin Configuration

RxOut17 -1	$1 \quad 48$	- V_{CC}
RxOut18 - 2	247	- RxOut16
GND -3	$3 \quad 46$	- RxOut15
RxOut19 - 4	445	- RxOut14
RxOut20 -5	$5 \quad 44$	- GND
NC - 6	643	- RxOut13
LVDS GND -7	$7 \quad 42$	- V V_{C}
Rxin0- - 8	$8 \quad 41$	- RxOut 12
Rxin $0+-9$	$9 \quad 40$	- RxOut11
Rxin 1- - 10	$10 \quad 39$	- RxOut10
Rxin1+ -1	1138	- GND
LVDS $V_{\text {CC }}-1$	1237	- RxOut9
LVDS GND -1	$13 \quad 36$	- Vcc
Rxin2- - 1	$14 \quad 35$	- RxOut8
RxIn2+ -1	$15 \quad 34$	- RxOut7
RxCLKIn- 1	1633	- RxOut 6
RxCLKIn+ -1	$17 \quad 32$	- GND
LVDS GND - 1	18 31	- RxOut5
PLL GND - 1	1930	- RxOut 4
PLL $V_{\text {CC }}-20$	$20 \quad 29$	- RxOut3
PLL GND - 2	$21 \quad 28$	- V_{CC}
PwrDn - 2	$22 \quad 27$	- RxOut2
RxCLKOut - 2	23 26	- RxOut1
RxOut0 - 2	$24 \quad 25$	- GND

Figure 4. FIN1218 / FIN1216 (3:21 Receiver)

Pin Definitions

Pin Names	I/O Type	\# of Pins	Description of Signals
RxIn	I	3	Negative LVDS Differential Data Output
RxIn+	I	3	Positive LVDS Differential Data Output
RxCLKIn-	I	1	Negative LVDS Differential Clock Output
RxCLKIn+	I	1	Positive LVDS Differential Clock Output
RxOut-	O	21	LVTTL Level Data Outputs Goes HIGH for /PwrDn LOW
RxCLKOut	O	1	LVTTL Level Clock Output
/PwrDn	I	1	LVTTL Level Input; Refer to Transmitter and Receiver Power-up and Power-down Operation Truth Table
PLL VCC	I	1	Power Supply Pin for PLL
PLL GND	I	2	Ground Pins for PLL
LVDS VCC	I	1	Power Supply Pins for LVDS Inputs
LVDS GND	I	3	Ground Pin for LVDS Inputs
VCC	I	4	Power Supply Pins for LVTTL Outputs
GND	I	5	Ground Pins for LVTTL Outputs
NC			No Connect

Truth Tables

Transmitter

Inputs			Outputs	
TxIn	TxCLKIn	PwrDn $^{(1)}$	TxOut $\mathbf{~}$	TxCLKOut \pm
Active	Active	HIGH	LOW $/ \mathrm{HIGH}$	LOW $/ \mathrm{HIGH}$
Active	LOW $/ \mathrm{HIGH}$ High Impedance	HIGH	LOW / HIGH	Don't Care ${ }^{(2)}$
Floating	Active	HIGH	LOW	LOW $/ \mathrm{HIGH}$
Floating	Floating	HIGH	LOW	Don't Care ${ }^{(2)}$
Don't Care	Don't Care	LOW	High Impedance	High Impedance

Notes:

1. The outputs of the transmitter or receiver remain in a high-impedance state until V_{cc} reaches 2 V .
2. TxCLKOut \pm settles at a free running frequency when the part is powered up, PwrDn is HIGH and the TxCLKIn is a steady logic level LOW / HIGH / high-impedance.

Receiver

Inputs			Outputs	
RxIn \pm	RxCLKIn \pm	$/ \mathrm{PwrDn}{ }^{(3)}$	RxOut	RxCLKOut
Active	Active	HIGH	LOW / HIGH	LOW / HIGH
Active	Failsafe Condition ${ }^{(4)}$	HIGH	Last Valid State	HIGH
Failsafe Condition ${ }^{(4)}$	Active	HIGH	HIGH	LOW / HIGH
Failsafe Condition ${ }^{(4)}$	Failsafe Condition ${ }^{(4)}$	HIGH	Last Valid State ${ }^{(5)}$	HIGH
Don't Care	Don't Care	LOW	LOW	HIGH

Notes:
3. The outputs of the transmitter or receiver remain in a high-impedance state until V_{cc} reaches 2 V .
4. Failsafe condition is defined as the input being terminated and un-driven, shorted, or open.
5. If $R x C L K I n \pm$ is removed prior to the $R x \operatorname{In} \pm$ date being removed, $R x O$ out is the last valid state. If $R x \operatorname{In} \pm$ data is removed prior to RxCLKIn \pm being removed, RxOut is HIGH.

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter		Min.	Max.	Unit
$V_{\text {cc }}$	Power Supply Voltage		-0.3	+4.6	V
$\mathrm{V}_{\text {TTL }}$	TTL/CMOS Input/Output Voltage		-0.5	+4.6	V
$\mathrm{V}_{\text {LVDS }}$	LVDS Input/Output Voltage		-0.3	+4.6	V
losd	LVDS Output Short-Circuit Current			Continuous	
$\mathrm{T}_{\text {STG }}$	Storage Temperature Range		-65	+150	${ }^{\circ} \mathrm{C}$
T_{J}	Maximum Junction Temperature, Soldering 4 seconds			+150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature			+260	${ }^{\circ} \mathrm{C}$
ESD	Human Body Model, JESD22-A114 (1.5k $\Omega, 100 \mathrm{pF}$)	LVDS I/O to Ground		10.0	kV
		All Pins (FIN1215, FIN1217)		6.5	
	Machine Model, $0 \Omega, 200 \mathrm{pF}$	FIN1215, FIN1217 Only		>400	V

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Max.	Unit
V_{CC}	Supply Voltage	3.0	3.6	V
$\mathrm{~T}_{\mathrm{A}}$	Operating Temperature	-40	+85	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {CCNPP }}$	Maximum Supply Noise Voltage ${ }^{(6)}$		100	$\mathrm{~m} \mathrm{~V}_{\mathrm{PP}}$

Note:
6. $100 \mathrm{mV} \mathrm{V}_{\mathrm{cc}}$ noise should be tested for frequency at least up to 2 MHz . All the specifications should be met under such a noise level.

Transmitter DC Electrical Characteristics

Typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and with $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$; minimum and maximum are at over supply voltages and operating temperatures ranges, unless otherwise specified.

Notes:

7. Positive current values refer to the current flowing into device and negative values means current flowing out of pins. Voltages are referenced to ground unless otherwise specified (except $\Delta \mathrm{V}_{\text {OD }}$ and $\mathrm{V}_{\text {OD }}$).
8. The power supply current for both transmitter and receiver can be different with the number of active I/O channels.
9. The 16-grayscale test pattern tests device power consumption for a "typical" LCD display pattern. The test pattern approximates signal switching needed to produce groups of 16 vertical strips across the display.
10. FIN1217 only.

Transmitter AC Electrical Characteristics

Typical values are at over supply voltages and operating temperatures ranges, unless otherwise specified.

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
$\mathrm{t}_{\mathrm{TCP}}$	Transmit Clock Period		11.76	T	50.00	ns
$\mathrm{t}_{\text {TCH }}$	Transmit Clock (TxCLKIn) HIGH Time	Figure 10	0.35	0.50	0.65	T
$\mathrm{t}_{\text {TCL }}$	Transmit Clock LOW Time		0.35	0.50	0.65	T
$\mathrm{t}_{\mathrm{CLKT}}$	TxCLKIn Transition Time (Rising and Failing)	10% to 90% Figure 11	1.0		6.0	ns
$\mathrm{t}_{\text {IIT }}$	TxCLKIn Cycle-to-Cycle Jitter				3.0	ns
$\mathrm{t}_{\text {XIT }}$	TxIn Transition Time		1.5		6.0	ns

LVDS Transmitter Timing Characteristics

tтLH	Differential Output Rise Time (20\% to 80\%)	Figure 8		0.75	1.50	ns
$\mathrm{t}_{\text {THL }}$	Differential Output Fall Time (80\% to 20\%)			0.75	1.50	ns
$\mathrm{t}_{\text {stc }}$	Txin Setup to TxCLNIn	Figure 10 $\mathrm{f}=85 \mathrm{MHz}$ FIN1217 only	2.5			ns
$\mathrm{t}_{\text {HTC }}$	TxIn Holds to TCLKIn		0			ns
$\mathrm{t}_{\text {TPDD }}$	Transmitter Power-Down Delay	Figure $17^{(11)}$			100	ns
$\mathrm{t}_{\text {TCCD }}$	Transmitter Clock Input to Clock Output Delay	Figure 13			5.5	ns
		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$	2.8		6.8	

Transmitter Output Data Jitter ($\mathrm{f}=40 \mathrm{MHz})^{(12)}$

tTPPB0	Transmitter Output Pulse Position of Bit 0	Figure 20$a=\frac{1}{f \times 7}$
tTPPB1	Transmitter Output Pulse Position of Bit 1	
$\mathrm{t}_{\text {TPPB2 }}$	Transmitter Output Pulse Position of Bit 2	
$\mathrm{t}_{\text {TPPB3 }}$	Transmitter Output Pulse Position of Bit 3	
tTPPB4	Transmitter Output Pulse Position of Bit 4	
$\mathrm{t}_{\text {TPPB5 }}$	Transmitter Output Pulse Position of Bit 5	
$\dagger_{\text {TPPB6 }}$	Transmitter Output Pulse Position of Bit 6	

-0.25	0	0.25	ns
$\mathrm{a}-0.25$	a	$\mathrm{a}+0.25$	ns
$2 \mathrm{a}-0.25$	2 a	$2 \mathrm{a}+0.25$	ns
$3 \mathrm{a}-0.25$	3 a	$3 \mathrm{a}+0.25$	ns
$4 \mathrm{a}-0.25$	4 a	$4 \mathrm{a}+0.25$	ns
$5 \mathrm{a}-0.25$	5 a	$5 \mathrm{a}+0.25$	ns
$6 \mathrm{a}-0.25$	6 a	$6 \mathrm{a}+0.25$	ns

Transmitter Output Data Jitter ($\mathrm{f}=65 \mathrm{MHz}$) ${ }^{(12)}$

t ${ }_{\text {TPPB0 }}$	Transmitter Output Pulse Position of Bit 0	Figure 20$a=\frac{1}{f \times 7}$	-0.2	0	0.2	ns
$t_{\text {TPPB1 }}$	Transmitter Output Pulse Position of Bit 1		a-0.2	a	a+0.2	ns
$\mathrm{t}_{\text {TPPB2 }}$	Transmitter Output Pulse Position of Bit 2		2a-0.2	2a	$2 \mathrm{a}+0.2$	ns
${ }^{\text {t }}$ TPPB3	Transmitter Output Pulse Position of Bit 3		$3 \mathrm{a}-0.2$	3 a	$3 \mathrm{a}+0.2$	ns
tTPPB4	Transmitter Output Pulse Position of Bit 4		4a-0.2	4a	$4 a+0.2$	ns
$\mathrm{t}_{\text {TPPB5 }}$	Transmitter Output Pulse Position of Bit 5		5a-0.2	5a	5a+0.2	ns
tTPPB6	Transmitter Output Pulse Position of Bit 6		6a-0.2	6a	$6 a+0.2$	ns

Continued on following page...

Transmitter AC Electrical Characteristics (Continued)

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
Transmitter Output Data Jitter (f=85 MHz, FIN1217 only) ${ }^{(12)}$						
t ${ }_{\text {TPPB0 }}$	Transmitter Output Pulse Position of Bit 0	Figure 20$a=\frac{1}{f \times 7}$	-0.2	0	0.2	ns
t ${ }_{\text {TPPB1 }}$	Transmitter Output Pulse Position of Bit 1		a-0.2	a	a+0.2	ns
$\mathrm{t}_{\text {TPPB2 }}$	Transmitter Output Pulse Position of Bit 2		2a-0.2	2a	2a+0.2	ns
tTPPB3	Transmitter Output Pulse Position of Bit 3		3a-0.2	3a	$3 \mathrm{a}+0.2$	ns
$\mathrm{t}_{\text {TPPB4 }}$	Transmitter Output Pulse Position of Bit 4		4a-0.2	4a	$4 \mathrm{a}+0.2$	ns
$\dagger_{\text {TPPB5 }}$	Transmitter Output Pulse Position of Bit 5		5a-0.2	5a	$5 \mathrm{a}+0.2$	ns
$\mathrm{t}_{\text {TPPB6 }}$	Transmitter Output Pulse Position of Bit 6		6a-0.2	6a	$6 \mathrm{a}+0.2$	ns
$\mathrm{t}_{\text {Jcc }}$	Transmitter Clock Out Jitter, Cycle-to cycle Figure 23	$\mathrm{f}=40 \mathrm{MHz}$		350	370	ps
		$\mathrm{f}=65 \mathrm{MHz}$		210	230	
		$\begin{aligned} & \mathrm{f}=85 \mathrm{MHz} \\ & \text { FIN1217 only } \end{aligned}$		110	150	
tTPLLS	Transmitter Phase Lock Loop Set Time ${ }^{(13)}$	Figure $15^{(12)}$			10.0	ms

Notes:
11. Outputs of all transmitters stay in 3-STATE until power reaches 2 V . Clock and data output begins to toggle 10 ms after V_{cc} reaches 3 V and /PwrDn pin is above 1.5 V .
12. This output data pulse position works for both transmitters with 21 TTL inputs, except the LVDS output bit mapping difference (see Figure 19). Figure 20 shows the skew between the first data bit and clock output. A two-bit cycle delay is guaranteed when the MSB is output from transmitter.
13. This jitter specification is based on the assumption that PLL has a reference clock with cycle-to-cycle input jitter of less than 2 ns .

Receiver DC Electrical Characteristics

Typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and with $\mathrm{V}_{\mathrm{C}}=3.3 \mathrm{~V}$. Positive current values refer to the current flowing into device and negative values means current flowing out of pins. Voltages are referenced to ground unless otherwise specified (except $\Delta \mathrm{V}_{O D}$ and $\mathrm{V}_{O D}$). Minimum and maximum values are at over supply voltage and operating temperature ranges unless otherwise specified.

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
LVTTL/CMOS DC Characteristics						
V_{IH}	Input High Voltage		2.0		V_{Cc}	V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage		GND		0.8	V
V_{OH}	Output High Voltage	$\mathrm{l}_{\text {OH }}=-0.4 \mathrm{~mA}$	2.7	3.3		V
$\mathrm{V}_{\text {OL }}$	Output Low Voltage	$\mathrm{l}_{\text {OL }}=2 \mathrm{~mA}$			0.3	V
$V_{\text {IK }}$	Input Clamp Voltage	$\mathrm{l}_{\mathrm{K}=}=-18 \mathrm{~mA}$			-1.5	V
I_{N}	Input Current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to 4.6V	-10		10	$\mu \mathrm{A}$
loff	Input/Output Power-Off Leakage Current	$\mathrm{V}_{\mathrm{Cc}}=0 \mathrm{~V}$, All LVTTL Inputs/Outputs 0 V to 4.6 V			± 10	$\mu \mathrm{A}$
los	Output Short-Circuit Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$		-60	-120	$\mu \mathrm{A}$

Receiver LVDS Input Characteristics

$\mathrm{V}_{\text {TH }}$	Differential Input Threshold HIGH	Figure 6, Table 2		100	mV
$\mathrm{V}_{\text {TL }}$	Differential Input Threshold LOW	Figure 6, Table 2	-100		mV
$\mathrm{V}_{\text {ICM }}$	Input Common Mode Range	Figure 6, Table 2	0.05	2.35	V
1 N	Input Current	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3.6 \mathrm{~V}$ or 0 V		± 10.0	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3.6 \mathrm{~V}$ or 0 V		± 10.0	

Receiver Supply Current

ICCWR	3:21 Receiver Power Supply Current for Worst Case Pattern with Load ${ }^{(14)}$	$\mathrm{C}_{\mathrm{L}=8 \mathrm{p}}$ F, Figure 7	33 MHz		66	mA
			40 MHz	56	74	
			65 MHz	75	102	
			$85 \mathrm{MHz}^{(15)}$	92	125	
ICCPDR	Powered Down Supply Current	$/ \mathrm{PwrDn}=0.8 \mathrm{~V}(\mathrm{RxO}$	stays LOW)	NA	400	$\mu \mathrm{A}$

Notes:

14. The power supply current for the receiver can be different due to the number of active I/O channels.
15. 85.0 MHz specification for FIN1218 only.

Receiver AC Electrical Characteristics

Values are at over supply voltages and operating temperatures, unless otherwise specified.

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
$\mathrm{t}_{\text {RCOL }}$	RxCLKOut LOW Time	Figure 12 Rising Edge Strobe $\mathrm{f}=40 \mathrm{MHz}$	10.0	11.0		ns
$\mathrm{t}_{\mathrm{RCOH}}$	RxCLKOut HIGH Time		10.0	12.2		ns
trsRC	RxOut Valid Prior to RxCLKOut		6.5	11.6		ns
$\mathrm{t}_{\text {RHRC }}$	RxOut Valid After RxCLKOut		6.0	11.6		ns
$\mathrm{t}_{\text {RCOP }}$	Receiver Clock Output (RxCLKOut) Period	Figure 12 Rising Edge Strobe $\mathrm{f}=65 \mathrm{MHz}$	15.0	T	50.0	ns
trcol	RxCLKOut LOW Time		5.0	7.8	9.0	ns
$\mathrm{t}_{\mathrm{RCOH}}$	RxCLKOut HIGH Time		5.0	7.3	9.0	ns
$\mathrm{t}_{\text {RSRC }}$	RxOut Valid Prior to RxCLKOut		4.5	7.7		ns
$\mathrm{t}_{\text {RHRC }}$	RxOut Valid After RxCLKOut		4.0	8.4		ns
$\mathrm{t}_{\text {RCOP }}$	Receiver Clock Output (RxCLKOut) Period	Figure 12 Rising Edge Strobe $\mathrm{f}=85 \mathrm{MHz}$ FIN1218 only	11.76	T	50.00	ns
$\mathrm{t}_{\text {RCOL }}$	RxCLKOut LOW Time		4.0	6.3	6.0	ns
trcoh	RxCLKOut HIGH Time		4.5	5.4	6.5	ns
trsrc	RxOut Valid Prior to RxCLKOut		3.5	6.3		ns
$\mathrm{t}_{\text {RHRC }}$	RxOut Valid After RxCLKOut		3.5	6.5		ns
$\mathrm{t}_{\text {ROLH }}$	Output Rise Time (20\% to 80\%)	$\mathrm{C}_{\mathrm{L}}=8 \mathrm{pF}$, Figure 9		2.2	5.0	ns
$\mathrm{t}_{\text {ROHL }}$	Output Fall Time (80\% to 20\%)			2.1	5.0	ns
$\mathrm{t}_{\mathrm{RCCD}}$	Receiver Clock Input to Clock Output Delay	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{C \mathrm{C}}=3.3 \mathrm{~V}$ $\text { Figure } 14^{(16)}$	3.5	6.9	7.5	ns
$t_{\text {RPDD }}$	Receiver Power-Down Delay	Figure 18			1.0	ms
$\mathrm{t}_{\text {RSPB0 }}$	Receiver Input Strobe Position of Bit 0	Figure 21 $\mathrm{f}=40 \mathrm{MHz}$	1.00		2.15	ns
$\mathrm{t}_{\text {RSPB1 }}$	Receiver Input Strobe Position of Bit 1		4.5		5.8	ns
$\mathrm{t}_{\text {RSPB2 }}$	Receiver Input Strobe Position of Bit 2		8.10		9.15	ns
trspb3	Receiver Input Strobe Position of Bit 3		11.6		12.6	ns
$\mathrm{t}_{\text {RSPB4 }}$	Receiver Input Strobe Position of Bit 4		15.1		16.3	ns
$\mathrm{t}_{\text {RSPB5 }}$	Receiver Input Strobe Position of Bit 5		18.8		19.9	ns
$\mathrm{t}_{\text {RSPB6 }}$	Receiver Input Strobe Position of Bit 6		22.5		23.6	ns

Continued on following page...

Receiver AC Electrical Characteristics (Continued)

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
$\mathrm{t}_{\text {RSPB0 }}$	Receiver Input Strobe Position of Bit 0	Figure 21 $\mathrm{f}=65 \mathrm{MHz}$	0.7		1.4	ns
$t_{\text {RSPB1 }}$	Receiver Input Strobe Position of Bit 1		2.9		3.6	ns
$\mathrm{t}_{\text {RSPB2 }}$	Receiver Input Strobe Position of Bit 2		5.1		5.8	ns
$\mathrm{t}_{\text {RSPB3 }}$	Receiver Input Strobe Position of Bit 3		7.3		8.0	ns
$\mathrm{t}_{\text {RSPB4 }}$	Receiver Input Strobe Position of Bit 4		9.5		10.2	ns
$\mathrm{t}_{\text {RSPB5 }}$	Receiver Input Strobe Position of Bit 5		11.7		12.4	ns
$\mathrm{t}_{\text {RSPB6 }}$	Receiver Input Strobe Position of Bit 6		13.9		14.6	ns
trspbo	Receiver Input Strobe Position of Bit 0	Figure 21 $\mathrm{f}=85 \mathrm{MHz}$ FIN1218 only	0.49		1.19	ns
$\mathrm{t}_{\text {RSPB1 }}$	Receiver Input Strobe Position of Bit 1		2.17		2.87	ns
$\mathrm{t}_{\text {RSPB2 }}$	Receiver Input Strobe Position of Bit 2		3.85		4.55	ns
$\mathrm{t}_{\text {RSPB3 }}$	Receiver Input Strobe Position of Bit 3		5.53		6.23	ns
$\mathrm{t}_{\text {RSPB4 }}$	Receiver Input Strobe Position of Bit 4		7.21		7.91	ns
$\mathrm{t}_{\text {RSPB5 }}$	Receiver Input Strobe Position of Bit 5		8.89		9.59	ns
$\mathrm{t}_{\text {RSPB6 }}$	Receiver Input Strobe Position of Bit 6		10.57		11.27	ns
$t_{\text {RSkm }}$	RxIn Skew Margin ${ }^{(17)}$	$\mathrm{f}=40 \mathrm{MHz}$, Figure 22	490			ps
		$\mathrm{f}=65 \mathrm{MHz}$, Figure 22	400			
		$\begin{aligned} & \mathrm{f}=85 \mathrm{MHz} \\ & \text { FIN1218 only } \\ & \text { Figure } 22 \end{aligned}$	252			
trplls	Receiver Phase Lock Loop Set Time	Figure 16			10.0	ms

Notes:

16. Total channel latency from serializer to deserializer is ($T+t_{T C C D}$) $+\left(2 \cdot T+t_{R C C D}\right)$.
17. Receiver skew margin is defined as the valid sampling window after considering potential setup/hold time and minimum/maximum bit position.

Test Circuits

Figure 5. Differential LVDS Output DC Test Circuit

Notes: For all input pulses, t_{R} or $\mathrm{t}_{\mathrm{F}}<=1 \mathrm{~ns}$.
C_{L} includes all probe and jig capacitance.
Figure 6. Differential Receiver Voltage Definitions, Propagation Delay, and Transition Time Test Circuit

Table 2. Receiver Minimum and Maximum Input Threshold Test Voltages

Applied Voltages (V)		Resulting Differential Input Voltage (mV)	Resulting Common Mode Input Voltage (V)
$\mathbf{V}_{\mathbf{I A}}$	$\mathbf{V}_{\mathbf{I B}}$	$\mathbf{V}_{\text {ID }}$	$\mathbf{V}_{\mathbf{I C}}$
1.25	1.15	100	1.20
1.15	1.25	-100	1.20
2.40	2.30	100	2.35
2.30	2.40	-100	2.35
0.10	0	100	0.05
0	0.10	-100	0.05
1.50	0.90	600	1.20
0.90	1.50	-600	1.20
2.40	1.80	600	2.10
1.80	2.40	-600	2.10
0.60	0	600	0.30
0	0.60	-600	0.30

AC Loadings and Waveforms

Note: The worst-case test pattern produces a maximum toggling of digital circuits, LVDS I/O and LVTTL/CMOS I/O. Depending on the valid strobe edge of transmitter, the TxCLKIn can be either rising or failing edge data strobe.

Figure 7. Worst-Case Test Pattern
$V_{\text {DIFF }}=(T x O u t+)-($ TxOut -$)$

Figure 8. Transmitter LVDS Output Load and Transition Times

Figure 9. Receiver LVTTL/CMOS Output Load and Transition Times

ge Strobe)

Figure 11. Transmitter Input Clock Transition Time

AC Loadings and Waveforms (Continued)

Figure 12. Receiver Set-up/Hold and HIGH/LOW Times

Figure 13. Transmitter Clock-In to Clock-Out Delay (Rising Edge Strobe)

Figure 14. Receiver Clock-In to Clock-Out Delay (Rising Edge Strobe)

Figure 15. Transmitter Phase-Lock-Loop Set Time

AC Loadings and Waveforms (Continued)

Figure 16. Receiver Phase Lock Loop Set Time

Figure 17. Transmitter Power-down Delay

Figure 18. Receiver Power-down Delay

Note: This output date pulse position works for both transmitters with 21 TTL inputs, except the LVDS output bit mapping difference. Two-bit cycle delay is guaranteed with the MSB is output from transmitter.

Figure 19. Parallel LVTTL Inputs Mapped to Three Serial LVDS Outputs

AC Loadings and Waveforms (Continued)]

Figure 20. Transmitter Output Pulse Bit Position

Figure 21. Receiver Strobe Bit Position

AC Loadings and Waveforms (Continued)

Note: trskm is the budget for the cable skew and source clock skew plus Inter-Symbol Interference (ISI).
The minimum and maximum pulse position values are based on the bit position of each of the seven bits within the LVDS data stream across PVT (Process, Voltage Supply, and Temperature).

Figure 22. Receiver LVDS Input Skew Margin


```
32.5 MHz-N Cycle = 66
40 MHz-N Cycle = 80
65 MHz - N Cycle = 132
85 MHz - N Cycle = 170
```

Note: This jitter pattern is used to test the jitter response (clock out) of the device over the power supply range with worst jitter \pm ns (cycle-to-cycle) clock input. The specific test methodology is as follows:

- Switching input data $T x \ln 0$ to $T x \ln 20$ at 0.5 MHz and the input clock is shifted to left -3 ns and to the right +3 ns when data is HIGH (by switching between CLK1 and CLK2 in Figure 11).
- The ± 3 ns cycle-to-cycle input jitter is the static phase error between the two clock sources. Jumping between two clock sources to simulate the worst-case of clock edge jump (3ns) from graphical controllers. Cycle-to-cycle jitter at TxCLK out pin should be measured cross $\mathrm{V}_{\text {CC }}$ range with 100 mV noise (V_{cc} noise frequency $<2 \mathrm{MHz}$).

Figure 23. Jitter Pattern

Physical Dimensions

MTD48REVC
Figure 24. 48-Lead Thin Shrink Small Outline Package (TSSOP)

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

A/ways visit Fairchild Semiconductor's online packaging area for the most recent package drawings:
http://www.fairchildsemi.com/packaging/

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

ACEX ${ }^{(8)}$	FPS ${ }^{\text {TM }}$	PDP SPM ${ }^{\text {TM }}$	The Power Franchise ${ }^{(1)}$
Build it $\mathrm{Now}^{\text {TM }}$	F-PFS ${ }^{\text {TM }}$	Power-SPM ${ }^{\text {™ }}$	the mer
CorePLUS ${ }^{\text {™ }}$	FRFET ${ }^{(8)}$	PowerTrench ${ }^{\left({ }^{(1)}\right.}$	Pranchise
CorePOWER ${ }^{\text {™ }}$	Global Power Resource ${ }^{\text {snt }}$	Programmable Active Droop ${ }^{\text {TM }}$	TinyBoost ${ }^{\text {TM }}$
CROSSVOLT ${ }^{\text {MM }}$	Green FPS ${ }^{\text {TM }}$	QFET ${ }^{(8)}$	TinyBuck ${ }^{\text {TM }}$
CTL ${ }^{\text {TM }}$	Green FPS ${ }^{\text {TM }}$ e-Series ${ }^{\text {TM }}$	QS ${ }^{\text {TM }}$	TinyLogic ${ }^{(8)}$
Current Transfer Logic ${ }^{\text {TM }}$	GTO ${ }^{\text {M }}$	Quiet Series ${ }^{\text {TM }}$	TINYOPTO ${ }^{\text {™ }}$
Ecospark ${ }^{(8)}$	IntelliMAX ${ }^{\text {dm }}$	RapidConfigure ${ }^{\text {TM }}$	TinyPower ${ }^{\text {TM }}$
EfficentMax ${ }^{\text {TM }}$	ISOPLANAR ${ }^{\text {™ }}$	Saving our world, 1 mW at a time ${ }^{\text {TM }}$	TinyPWM ${ }^{\text {Tm }}$
EZSWITCH ${ }^{\text {TM }}$ *	MegaBuck ${ }^{\text {™ }}$	SmartMax ${ }^{\text {TM }}$	TinyWire ${ }^{\text {TM }}$
$E 7^{\text {TM }}$	MICROCOUPLER ${ }^{\text {TM }}$	SMART STARTTM	μ SerDes $^{\text {TM }}$
\square^{\circledR}	MicroFET ${ }^{\text {TM }}$	$\mathrm{SPM}^{(8)}$	W
\square^{8}	MicroPak ${ }^{\text {TM }}$	STEALTH ${ }^{\text {TM }}$	SerDes
Fairchild ${ }^{(2)}$	MillerDrive ${ }^{\text {TM }}$	SuperFET ${ }^{\text {TM }}$	UHC ${ }^{\text {河 }}$
Fairchild Semiconductor ${ }^{(8)}$	MotionMax ${ }^{\text {TM }}$	SuperSOTM ${ }^{\text {m }}$ -	Ultra FRFET ${ }^{\text {TM }}$
FACT Quiet Series ${ }^{\text {TM }}$	Motion-SPM ${ }^{\text {TM }}$	SuperSOT ${ }^{\text {TM }}$-6	UniFET ${ }^{\text {TM }}$
$\mathrm{FACT}^{®}$	OPTOLOGIC ${ }^{(8)}$	SuperSOTTM-8	$V C X^{T M}$
$\text { FAST }^{(®)}$	OPTOPLANAR ${ }^{(8)}$	SupreMOS ${ }^{\text {TM }}$	VisualMax ${ }^{\text {TM }}$
FastvCore ${ }^{\text {TM }}$		SyncFET ${ }^{\text {TM }}$	
FlashWriter ${ }^{(6)}{ }^{\text {* }}$		CSMSTEM ${ }_{\text {S }}$ SENERAL	

${ }^{*}$ EZSWITCH ${ }^{\text {TM }}$ and FlashWriter ${ }^{(3)}$ are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREINTO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN: NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user:
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS
Definition of Terms

Datasheet Identification	Product Status	\quad Definition
Advance Information	Formative / In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	This datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. 134

