

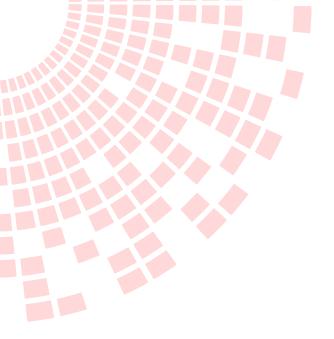
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832


Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Features

- RoHS lead-free-solder and lead-solder-exempted products available
- 5 year warranty for RoHS compliant products with an extended temperature range
- Compliant with EN 50155, EN 50121-3-2
- Fire & smoke according to EN 45545 and NF-F16 (ver. V108 or later; not models with H15-S4 connector)
- Class I equipment
- Extremely wide input voltage ranges from 8 to 385 VDC, and 85 to 264 VAC, 47 to 440 Hz
- Input over- and undervoltage lockout
- · Adjustable output voltage with remote on/off
- 1 or 2 outputs: SELV, no load, overload & short-circuit proof
- · Rectangular current limiting characteristic
- · PCBs protected by lacquer
- · Very high reliability

Safety-approved to the latest edition of IEC/EN 60950-1 and UL/CSA 60950-1

Table of Contents

Description	2
Model Selection	
Functional Description	5
Electrical Input Data	
Electrical Output Data	
·	13

Electromagnetic Compatibility (EMC)	17
mmunity to Environmental Conditions	
Mechanical Data	20
Safety and Installation Instructions	22
Description of Options	
Accesories	3/

Description

The K Series of DC-DC and AC-DC converters represents a broad and flexible range of power supplies for use in advanced electronic systems. Features include high efficiency, high reliability, low output voltage noise and excellent dynamic response to load/line changes. LK models can be powered by DC or AC with a wide-input frequency range (without PFC).

The converter inputs are protected against surges and transients. An input over- and undervoltage lockout circuitry disables the outputs, if the input voltage is outside of the specified range. Certain types include an inrush current limiter preventing circuit breakers and fuses from tripping at switch-on.

All outputs are open- and short-circuit proof, and are protected against overvoltages by means of built-in suppressor diodes. The output can be inhibited by a logic signal applied to pin 18 (i). The inhibit function is not used, pin 18 must be connected with pin 14 to enable the outputs.

LED indicators display the status of the converter and allow for visual monitoring of the system at any time.

Full input-to-output, input-to-case, output-to-case, and output to output isolation is provided. The converters are designed, built, and safety-approved to the international safety standards IEC/EN 60950-1. They are particularly suitable for railway applications and comply with EN 50155 and EN 50121-3-2.

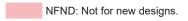
The case design allows operation at nominal load up to 71 °C with natural cooling. If forced cooling is provided, the ambient temperature may exceed 71 °C, but the case temperature must remain below 95 °C.

A temperature sensor generates an inhibit signal, which disables the outputs when the case temperature $T_{\rm C}$ exceeds the limit. The outputs are automatically re-enabled, when the temperature drops below the limit.

Various options are available to adapt the converters to individual applications.

The converters may either be plugged into a 19" DIN-rack system according to IEC 60297-3, or be chassis mounted.

Important: For applications requiring compliance with IEC/EN 61000-3-2 (harmonic distortion), please use our LK4000 or LK5000 Series with incorporated power factor correction (PFC).

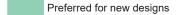

Model Selection

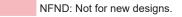
Non-standard input/output configurations or special customer adaptations are available on request.

Table 1a: Models AK

Outp	out 1	Outp	out 2	Input Voltage	Efficiency 1	Options
V _{o nom} [VDC]	/ _{o nom} [A]	V _{o nom} [VDC]	/ _{o nom} [A]	V _{i min} – V _{i max} 8 - 35 VDC	η _{min} [%]	
5.1	20	-	-	AK1001-9RG	79	
12	10	-	-	AK1301-9RG	81	-7 ⁴ , P, D, V ² , T, B, B1, non-G
15	8	-	-	AK1501-9RG	83	-1 , P, D, V , I, B, B1, HOII-G
24	5	-	-	AK1601-9RG	84.5	
12	5	12 ³	5	AK2320-9RG	79	
15	4	15 ³	4	AK2540-9RG	80.5	-7 ⁴, P, D, T, B, B1, non-G
24	2.5	2.5 24 ³ 2.5		AK2660-9RG	80.5	

- 1 Min. efficiency at $V_{\text{i nom}}$, $I_{\text{o nom}}$ and T_{A} = 25 °C. Typical values are approximately 2% better.
- ² Option V for models with 5.1 V outputs; excludes option D
- ³ Second output semi-regulated
- ⁴ AK, BK, FK models are available as -7 or -9, but without opt. E. The other models CK, DK, EK, LK are available as -7 or -9E (but not -7E).



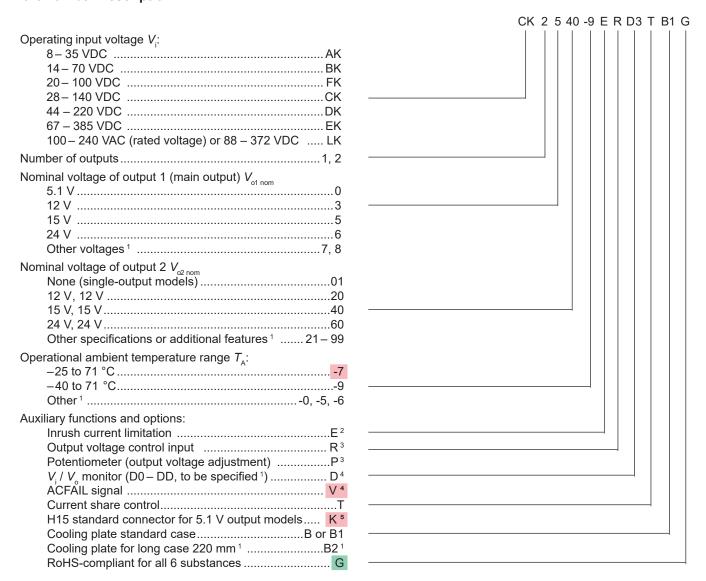

Table 1b: Models BK, FK, CK

Outp	out 1	Outp	out 2	Input Voltage	Effic.1	Input Voltage	Effic.1	Input Voltage	Effic.1	Options
V _{o nom} [VDC]	I _{o nom}	V _{o nom} [VDC]	/ _{o nom} [A]	V _{i min} – V _{i max} 14 - 70 VDC	η _{min} [%]	V _{i min} - V _{i max} 20 - 100 VDC	η _{min} [%]	V _{i min} - V _{i max} 28 - 140 VDC	η _{min} [%]	
5.1	25	-	-	BK1001-9RG	80.5	FK1001-9RG	80	CK1001-9RG	80	
12	12	-	-	BK1301-9RG	83	FK1301-9RG	82	CK1301-9RG	82	-7 ⁴ , P, D, V ² , T, B, B1, non-G
15	10	-	-	BK1501-9RG	84	FK1501-9RG	85	CK1501-9RG	85	-7 , P, D, V -, 1, B, B1, NON-G
24	6	-	-	BK1601-9RG	85	FK1601-9RG	86	CK1601-9RG	86	
12	6	12 ³	6	BK2320-9RG	80	FK2320-9RG	81	CK2320-9RG	81	
15	5	15 ³	5	BK2540-9RG	82	FK2540-9RG	83	CK2540-9RG	84	-7 ⁴, P, D, T, B, B1, non-G
24	3	24 ³	3	BK2660-9RG	82	FK2660-9RG	84	CK2660-9RG	84	

Table 1c: Models DK, EK, LK

Outp	ut 1	Outpu	t 2	Input Voltage	Effic.1	Input Voltage	Effic.1	Input Voltage	Effic.1	Options
V _{o nom} [VDC]	/ _{o nom} [A]	V _{o nom} [VDC]	I _{o nom}	V _{i min} - V _{i max} 44 - 220 VDC	η _{min} [%]	V _{i min} – V _{i max} 67 - 385 VDC	η _{min} [%]	V _{i min} – V _{i max} 88 - 372 VDC 100 - 240 VAC	η _{min} [%]	
5.1	25	-	-	DK1001-9ERG	80			LK1001-9ERG	79	
12	12	-	-	DK1301-9ERG	83	EK1301-9ERG	83	LK1301-9ERG	83	
12.84 5	10	-	-	DK1740-9ERG 5	83			LK1740-9ERG 5	83	-7 ⁴, P, D, V ², T, B, B1, non-G
15	10	-	-	DK1501-9ERG	85	EK1501-9ERG	84	LK1501-9ERG	84	
24	6	-	-	DK1601-9ERG	86	EK1601-9ERG	86	LK1601-9ERG	85	
12	6	12 ³	6	DK2320-9ERG	81	EK2320-9ERG	82	LK2320-9ERG	81	
15	5	15 ³	5	DK2540-9ERG	83	EK2540-9ERG	83	LK2540-9ERG	83	74 D D T D D1 non C
24	3	24 ³	3	DK2660-9ERG	84	EK2660-9ERG	84	LK2660-9ERG	82	-7 ⁴, P, D, T, B, B1, non-G
25.68 ⁶	2.5	25.68 ^{3, 6}	2.5	DK2740-9ERG ⁶	84			LK2740-9ERG ⁶	83	

- Min. efficiency at $V_{\rm i\,nom}$, $I_{\rm o\,nom}$ and $T_{\rm A}$ = 25 °C. Typical values are approximately 2% better. Option V for models with 5.1 V outputs; excludes option D
- Second output semi-regulated
- AK, BK, FK models are available as -7 or -9, but without opt. E. The other models CK, DK, EK, LK are available as -7 or -9E (but not -7E).
- Battery loader for 12 V batteries. V_0 is controlled by the battery temperature sensor (see Accessories) within 12.62 14.12 V. Options P and D are not available.
- Battery loader for 24 V (and 48 V batteries with series-connected outputs). V_{\circ} is controlled by the battery temperature sensor (see Accessories) within 25.25 – 28.25 V (50.5 – 56.5 V for 48 V batteries). Options P and D are not available.
- Option K is available only for LK with 5.1 V output in order to avoid the H15S4 connector. Efficiency is approx. 1.5% worse.



Part Number Description

- ¹ Customer-specific models
- Option E is mandatory for all -9 models, except AK, BK, FK.
- Feature R excludes option P and vice versa. Option P is not available for battery charger models.
- Option D excludes option V and vice versa; option V is available for single-output models with 5.1 V only.
- ⁵ Option K is available for single-output models with 5.1 V output to avoid the expensive H15-S4 connector.

Note: The sequence of options must follow the order above. This part number description is descriptive only; it is not intended for creating part numbers.

Example: CK2540-9ERD3TB1G: DC-DC converter, operating input voltage range 28 – 140 VDC, 2 electrically isolated outputs, each providing 15 V, 5 A, input current limiter E, control input R to adjust the output voltages, undervoltage monitor D3, current share feature T, cooling plate B1, and RoHS-compliant for all six substances.

Product Marking

Basic type designation, applicable approval marks, CE mark, warnings, pin designation, patents and company logo, identification of LEDs, test sockets, and potentiometer.

Specific type designation, input voltage range, nominal output voltages and currents, degree of protection, batch no., serial no., and data code including production site, modification status (version), and date of production.

tech.support@psbel.com belfuse.com/power-solutions

BCD20002-G Rev AG, 19-Jul-2018

Functional Description

The input voltage is fed via an input fuse, an input filter, a bridge rectifier (LK models only), and an inrush current limiter to the input capacitor. This capacitor sources a single-transistor forward converter with a special clamping circuit and provides also the power during the hold-up time.

Each output is powered by a separate secondary winding of the main transformer. The resultant voltages are rectified and their ripple smoothed by a power choke and an output filter. The control logic senses the main output voltage V_{o1} and generates, with respect to the maximum admissible output currents, the control signal for the switching transistor of the forward converter.

The second output of double-output models is tracking the main output, but has its own current limiting circuit. If the main output voltage drops due to current limitation, the second output voltage will fall as well and vice versa.

Standard models with a single 5.1 V output have a synchronous rectifier to provide good efficiency.

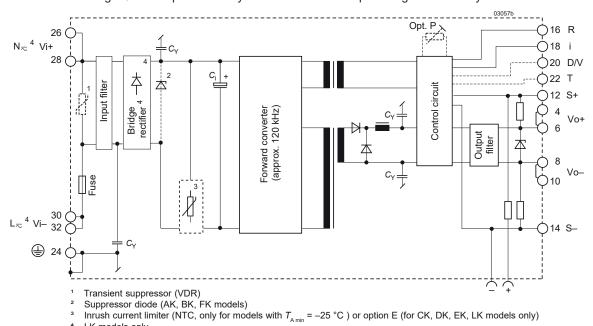


Fig. 1 Block diagram of single-output converters

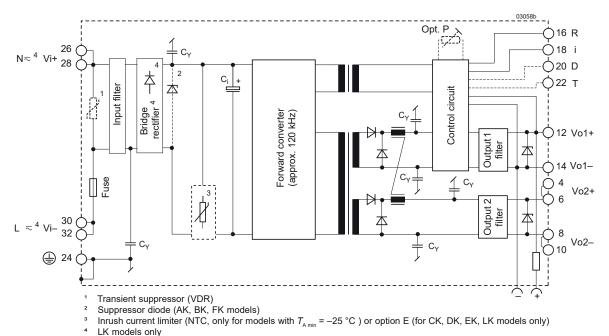


Fig. 2
Block diagram of double-output models

Electrical Input Data

General conditions:

- T_A = 25 °C, unless T_C is specified.
- Pin 18 connected to pin 14, $V_{\rm o}$ adjusted to $V_{\rm o\,nom}$ (if option P); R input not connected.
- Sense line pins S+ and S- connected to Vo+ and Vo- respectively.

Table 2a: Input data

Mod	el			AK			ВК			FK		Unit
Chai	racteristics	Conditions	min	typ	max	min	typ	max	min	typ	max	
V _i	Operating input voltage	$I_{o} = 0 - I_{o \text{ max}}$	8		35	14		70	20		100	VDC
V _{i nom}	Nominal input voltage	$T_{\text{C min}} - T_{\text{C max}}$		15			30			50		VDC
I _i	Input current	V _{i nom,} I _{o nom} 1		9.0			6.0			3.75		Α
P_{i0}	No-load input power	$V_{\text{i min}} - V_{\text{i max}}$			2.5			2.5			2.5	w
$P_{i inh}$	Idle input power	Unit inhibited			1.5			1.5			1.5	VV
R _i	Input resistance	T = 25 °C	65			100			70			mΩ
R _{NTC}	NTC resistance ²	T _C = 25 °C		no NTC			no NTC			no NTC		11122
C _i	Input capacitance		832	1040		300	370		1200	1500		μF
	Conducted input RFI	EN 55022,		Α			Α			В		
V _{i RFI}	Radiated input RFI	$V_{\text{i nom,}} I_{\text{o nom}}$		Α			Α			Α		
V _{i abs}	Input voltage limits without damage		0		40	0		84	0		100	VDC

Table 2b: Input data

Mod	el			СК			DK			EK			LK		Unit
Chai	racteristics	Conditions	min	typ	max	min	typ	max	min	typ	max	min	typ	max	
1/	Operating input voltage		28		140	44		220	67		385	88		372	VDC
V _i	Operating input voltage											854	(230)	2644	VAC
V _{i nom}	Nominal input voltage	Cmin Cmax		60			110			220			3104		VDC
I _i	Input current	V _{i nom} , I _{o nom} 1		3.0			1.6			8.0			0.57		Α
P_{i0}	No-load input power	$V_{\text{i min}} - V_{\text{i max}}$			2.5			2.5			2.5			2.5	W
Pinh	Idle input power	Unit inhibited			1.5			1.5			1.5			4.5	VV
R _i	Input resistance	T - 25 °C	150			170			180			480			mΩ
R _{NTC}	NTC resistance ²	$T_{\rm c}$ = 25 °C		1000			2000			4000			4000		11177
C _i	Input capacitance		960	1200		264	330		216	270		216	270		μF
1/	Conducted input RFI	EN 55022,		В			В			В			В		
V _{i RFI}	Radiated input RFI	V _{i nom,} I _{o nom}		Α			Α			Α			Α		
V _{i abs}	Input voltage limits without damage		0		154	0		400³	0		400	-400		400	VDC

- Both outputs of double-output models are loaded with $I_{\text{o nom}}$. Valid for -7 versions without option E (-9 versions exclude NTC). This is the nominal value at 25 °C and applies to cold converters at initial switch-on cycle. Subsequent switch-on/off cycles increase the inrush current peak value.
- Rated input voltage range is 100 240 VAC (nominal 230 VAC). Nominal frequency range is 50 60 Hz; operating frequency range is 47 – 440 Hz (440 Hz for 115 V mains). For frequencies ≥63 Hz, refer to *Installation Instructions*.

Input Transient Protection

A suppressor diode or a VDR (depending upon the input voltage range) together with the input fuse and a symmetrical input filter form an effective protection against high input transient voltages which, typically occur in most installations, but especially in battery-driven mobile applications.

Standard nominal battery voltages are: 12, 24, 36, 48, 60, 72, 110, and 220 V. Railway batteries are specified with a tolerance of -30% to +25%, with short excursions up to ±40%.

In certain applications, additional surges according to RIA12 are specified. The power supply must not switch off during these surges, and since their energy can practically not be absorbed, an extremely wide input range is required. The EK input range for 110 V batteries has been designed and tested to meet this requirement.

Input Fuse

A fuse mounted inside the converter protects against severe defects. This fuse may not fully protect the converter, when the input voltage exceeds 200 VDC. In applications, where the converters operate at source voltages above 200 VDC, an external fuse or a circuit breaker at system level should be installed.

Table 3: Fuse Specification

Model	Fuse type	Reference	Rating
AK	fast-blow 1	Littlefuse 314	30 A, 125 V
BK	fast-blow 1	Littlefuse 314	25 A, 125 V
FK	slow-blow ²	Schurter SPT	16 A, 250 V
CK	slow-blow ²	Schurter SPT	12.5 A, 250 V
DK	slow-blow ²	Schurter SPT	8 A, 250 V
EK, LK	slow-blow ²	Schurter SPT	4 A, 250 V

¹ Fuse size 6.3 × 32 mm ² Fuse size 5 × 20 mm

Inrush Current Limitation

The CK, DK, EK, and LK models incorporate an NTC resistor in the input circuitry, which at initial turn-on reduces the peak inrush current value by a factor of 5-10, such protecting connectors and switching devices from damage. Subsequent switch-on cycles within short periods will cause an increase of the peak inrush current value due to the warming-up of the NTC resistor. See also *Option E*.

The inrush current peak value (initial switch-on cycle) can be determined by following calculation; see also fig. 3:

$$I_{\text{inr p}} = \frac{V_{\text{i source}}}{(R_{\text{s ext}} + R_{\text{i}} + R_{\text{NTC}})}$$

$$I_{\text{i inr}}[A]$$

$$150$$

$$CK$$

$$EK, LK$$

$$DK$$

$$50$$

$$0$$

$$0$$

$$1$$

$$1$$

$$2$$

$$3$$

$$t \text{ ims}$$

Fig. 3 Typical inrush current versus time at $V_{i,max}$, $R_{ext} = 0 \Omega$. For AK, BK, FK, and for application-related values, use the formula in this section to get realistic results.

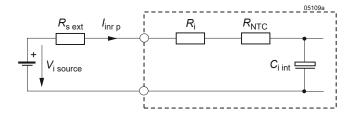


Fig. 4 Equivalent input circuit

MELCHER The Power Partners.

Static Input Current Characteristics

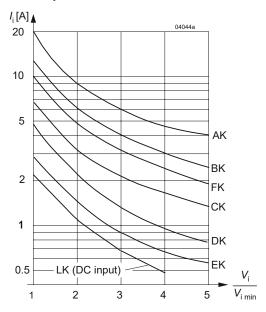


Fig. 5
Typical input current versus relative input voltage

Reverse Polarity

The converters (except LK models) are not protected against reverse polarity at the input to avoid unwanted power losses. In general, only the input fuse will trip.

LK models are fully protected by the built-in bridge rectifier.

Input Under-/Overvoltage Lockout

If the input voltage remains below approx. 0.8 $V_{\rm i\,min}$ or exceeds approx. 1.1 $V_{\rm i\,max}$, an internally generated inhibit signal disables the output(s). When checking this function, the absolute maximum input voltage $V_{\rm i\,abs}$ should be observed. Between $V_{\rm i\,min}$ and the undervoltage lock-out level the output voltage may be below the value defined in table *Electrical Output data*.

Hold-Up Time

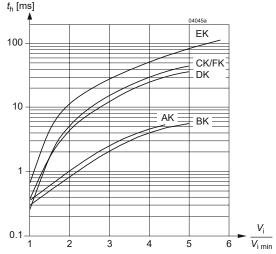


Fig. 6a Typical hold-up time $t_{\rm h}$ versus relative DC input voltage. $V_{\rm f}/V_{\rm i,min}$. DC-DC converters require an external series diode in the input path, if other loads are connected to the same input supply lines.

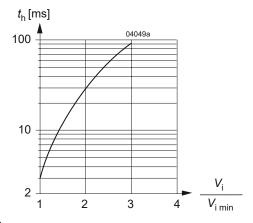
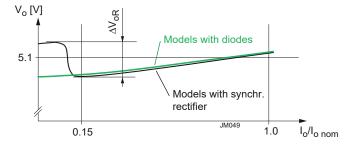


Fig. 6b Typical hold-up time t_h versus relative AC input voltage (LK models)

tech.support@psbel.com belfuse.com/power-solutions

BCD20002-G Rev AG, 19-Jul-2018

Electrical Output Data


General Conditions:

- $-T_{\rm A}$ = 25 °C, unless $T_{\rm C}$ is specified.
- Pin 18 (i) connected to pin 14 (S– or Vo1–), R input not connected, V_{\circ} adjusted to V_{\circ}_{\circ} (option P), Sense line pins 12 (S+) and 14 (S–) connected to pins 4 (Vo1+) and 8 (Vo1–), respectively.

Table 5: Output data of single-output models

Mod	el			AK	– LK1	001	AK – I	K1301	/1740 ⁵	AK	– LK1	501	AK	- LK10	601	Unit
Nom	. output vo	ltage			5.1 V		12 '	V / 12.84	4 V ⁵		15 V			24 V		
Char	racteristics	ı	Conditions	min	typ	max	min	typ	max	min	typ	max	min	typ	max	
V _o	Output vol	tage	V _{i nom} , I _{o nom}	5.07		5.13	11.935		12.075	14.91		15.09	23.86		24.14	
V _{o BR}	Output pro			6.0			15.2/17.	5 ⁵		19.6			28.5			V
I _{o nom}	Output cur	rent nom. 1	$ \begin{vmatrix} V_{\text{i min}} - V_{\text{i max}} \\ T_{\text{C min}} - T_{\text{C max}} \end{vmatrix} $	20 ⁶ /25 10 ^{5,6} /12		8 ⁶ /10		5 ⁶ /6			А					
I _{o L}	Output cur	rent limit	$V_{\text{i min}} - V_{\text{i max}}$	21 ⁶ /26 10.2 ^{5, 6} /12.2 8.6 ¹		8.6 ⁶ /10	.2		5.2 ⁶ /6.2							
		Low frequency ⁸				5			5			5			5	
V _o	Output noise ³	Switching frequ.	V _{i nom} , I _{o nom}		10			5			5			5		mV _{pp}
		Total incl. spikes	BW = 20 MHz		80			50			70			100		
$\Delta V_{\rm ou}$	Static line with respe		$V_{\text{i min}} - V_{\text{i max}}$ $I_{\text{o nom}}$			±15			±20			±25			±30	
ΔV_{ol}	Static load	regulation ²	V _{inom} (0.1 – 1) I _{o nom}			-20 ²			-30			-40			-50	mV
V _{od}	Dynamic load	Voltage deviation ⁹	V _{i nom}		±150			±130			±130			±150		
t _d	regulation ⁶	Recovery time 9	$I_{\text{o nom}} \leftrightarrow 0.5 I_{\text{o nom}}$		0.3			0.4			0.4			0.3		ms
ανο	Temperatu output volt	ire coefficient of age 4	$T_{\text{c min}} - T_{\text{c max}}$		±0.02			±0.02			±0.02			±0.02		%/K

- If the output voltages are increased above $V_{o,nom}$ through R-input control, option P setting, remote sensing or option T, the output currents should be reduced accordingly so that $P_{o,nom}$ is not exceeded.
- See fig. 7 below!
- Measured according to IEC/EN 61204 with a probe according to annex A
- For battery charger applications, a defined negative temperature coefficient can be provided by using a temperature sensor (see Accessories), but we recommend choosing the special battery charger models.
- Especially designed for battery charging using the temperature sensor (see Accessories). Vo is set to 12.84 V ±1% (R-input open)
- Values for AK models
- Breakdown voltage of the incorporated suppressor diode (1 mA; 10 mA for 5 V output). Exceeding $V_{0.88}$ is dangerous for the suppressor diode.
- ⁸ LK models only (twice the input frequency)
- See Dynamic load regulation

Output voltage regulation for models with synchronous rectifier and with diode rectifier

Table 6a: Output data of double-output models. General conditions as per table 5.

Mode	l (Nom. ou	ıtput voltage)	AK – LK2320 (2 x 12 V) AK – LK2540 (2 x 15 V) Ur						Unit							
Char	acteristics		Conditions		Output '	1	С	utput 2	2	(Output	1	0	utput	2	
Chara	acteristics		Conditions	min	typ	max	min	typ	max	min	typ	max	min	typ	max	
V _o	Output vo	ltage	V _{inom} , I _{o1 nom} , I _{o2 nom}	11.93		12.07	11.82		12.18	14.91		15.09	14.78		15.22	
V _{oBR} ⁸	Output pro			15.2			15.2			19.6			19.6			V
I _{o nom}	Output cu	rrent nom. ²	$ \begin{vmatrix} V_{\text{i min}} - V_{\text{i max}} \\ T_{\text{C min}} - T_{\text{C max}} \end{vmatrix} $	5 ¹ /6				5 ¹ /6			4 ¹/5			4 ¹/5		A
I _{o L}	Output cu	rrent limit 10	$V_{\text{i min}} - V_{\text{i max}}$	5.21/6.2	2		5.21/6.2			4.21/5.2	2		4.21/5.2			
	_	Low frequency 9				5			5			5			5	
V _o	Output noise ³	Switching frequ.	V _{i nom} , I _{o nom}		5			5			5			5		mV _{pp}
		Total incl. spikes	BW = 20 MHz		40			40			50			50		
$\Delta V_{\rm ou}$		regulation ect to V _{i nom}	V _{i min} - V _{i max}			±20		5				±25		5		
ΔV_{ol}	Static load	d regulation	V _{inom} (0.1 – 1) I _{o nom}			- 40		5				-50		5		mV
V _{od}	Dynamic load	Voltage deviation ⁴	$V_{\text{i nom}} \longleftrightarrow 0.5 I_{\text{o1 nom}}$		±100			±150			±100			±150		
t _d	regulation	Recovery time 4	0.5 I _{o2 nom}		0.2						0.2					ms
ανο	Temperati output vol	ure coefficient of tage ⁶	T _{C min} - T _{C max}		±0.02						±0.02					%/K

Table 6b: Output data of double-output models. General conditions as per table 5.

Model	(Nom. out	tput voltage)		AK – L	K2660	/ 2740 (2	2 × 24 V / :	2 × 25.	68 V) ⁷	Unit
Chara	cteristics		Conditions	0	utput 1		C	Output	2	
Cilarac	cteristics		Conditions	min	typ	max	min	typ	max	
V_{\circ}	Output vo	ltage	V _{inom} , I _{o1 nom} , I _{o2 nom}	23.86 ⁷		24.14 ⁷	23.64 ⁷		24.36 ⁷	
V _{oBR} ⁸	Output pro	otection sor diode)		28.5/34 ⁷			28.5/34 ⁷			V
I _{o nom}	Output cu	irrent nom. 2	$ \begin{vmatrix} V_{\text{i min}} - V_{\text{i max}} \\ T_{\text{C min}} - T_{\text{C max}} \end{vmatrix} $	2	2.5 ^{1,7} /3			2.5 ^{1,7} /3	,	А
I _{o L}	Output cu	rrent limit 10	$V_{\text{i min}} - V_{\text{i max}}$	2.71,7/3.2			2.7 1, 7/3.2	2		
	_	Low frequency 9	., ,			5			5	
V _o	Output noise ³	Switching frequ.	V _{inom} , I _{o nom}		5			5		mV _{pp}
		Total incl. spikes	BW = 20 MHz		80			80		
ΔV _{ou}		regulation ect to V _{inom}	V _{i min} - V _{i max} I _{o nom}			±30		5		
$\Delta V_{\circ 1}$	Static load	d regulation	V _{i nom} (0.1 – 1) I _{o nom}			-60		5		mV
V _{od}	Dynamic load	Voltage deviation ⁴	V _{inom}		±100			±150		
t _d	regulation	Recovery time 4	$ \begin{array}{c} I_{\text{o1 nom}} \leftrightarrow 0.5 I_{\text{o1 nom}} \\ 0.5 I_{\text{o2 nom}} \end{array} $		0.2					ms
ανο	Temperat output vo	ure coefficient of Itage ⁶	$T_{\text{c min}} - T_{\text{C max}}$		±0.02					%/K

- ¹ Values for AK models
- ² If the output voltages are increased above $V_{\text{o nom}}$ via R-input control, option P setting, remote sensing, or option T, the output currents should be reduced accordingly, so that $P_{\text{o nom}}$ is not exceeded.
- Measured according to IEC/EN 61204 with a probe annex A
- ⁴ See Dynamic Load Regulation
- See Output Voltage Regulation of Double-Output Models
- For battery charger applications, a defined negative temperature coefficient can be provided by using a temperature sensor; see Accessories.
- Especially designed for battery charging using the battery temperature sensor; see Accessories. V₂₁ is set to 25.68 V ±1% (R-input open-circuit).
- Breakdown voltage of the incorporated suppressor diodes (1 mA). Exceeding V_{obb} is dangerous for the suppressor diodes.
- LK models only (twice the input frequency)

tech.support@psbel.com belfuse.com/power-solutions

BCD20002-G Rev AG, 19-Jul-2018

Thermal Considerations

If a converter is located in free, quasi-stationary air (convection cooling) at the indicated maximum ambient temperature $T_{A\,\text{max}}$ (see table *Temperature specifications*) and is operated at its nominal input voltage and output power, the temperature measured at the *Measuring point of case temperature* T_{C} (see *Mechanical Data*) will approach the indicated value $T_{C\,\text{max}}$ after the warm-up phase. However, the relationship between T_{A} and T_{C} depends heavily upon the conditions of operation and integration into a system. The thermal conditions are influenced by input voltage, output current, airflow, and temperature of surrounding components and surfaces. $T_{A\,\text{max}}$ is therefore, contrary to $T_{C\,\text{max}}$, an indicative value only.

Caution: The installer must ensure that under all operating conditions T_c remains within the limits stated in the table Temperature specifications.

Notes: Sufficient forced cooling or an additional heat sink allows T_A to be higher than 71 °C (e.g., 85 °C), as long as $T_{C \text{ max}}$ is not exceeded. Details are specified in fig. 8.

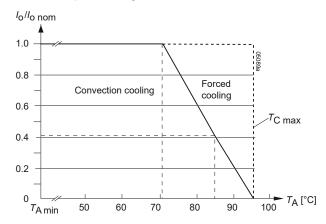


Fig. 8

Output current derating versus temperature for -7 and -9 models.

Thermal Protection

A temperature sensor generates an internal inhibit signal, which disables the outputs, when the case temperature exceeds $T_{\text{C max}}$. The outputs automatically recover, when the temperature drops below this limit.

Continuous operation under simultaneous extreme worst-case conditions of the following three parameters should be avoided: Minimum input voltage, maximum output power, and maximum temperature.

Output Protection

Each output is protected against overvoltages, which could occur due to a failure of the internal control circuit. Voltage suppressor diodes (which under worst case condition may become a short circuit) provide the required protection. The suppressor diodes are not designed to withstand externally applied overvoltages. Overload at any of the outputs will cause a shut-down of all outputs. A red LED indicates the overload condition.

Note: V_{obs} is specified in Electrical Output Data. If this voltage is exceeded, the suppressor diode generates losses and may become a short circuit.

Parallel and Series Connection

Single- or double-output models with equal output voltage can be connected in parallel using option T (current sharing). If the T pins are interconnected, all converters share the output current equally.

Single-output models and/or main and second outputs of double-output models can be connected in series with any other (similar) output.

Notes:

- Parallel connection of double-output models should always include both, main and second output to maintain good regulation.
- Not more than 5 converters should be connected in parallel.
- Series connection of second outputs without involving their main outputs should be avoided, as regulation may be poor.
- The maximum output current is limited by the output with the lowest current limitation when several outputs are connected in series.

tech.support@psbel.com belfuse.com/power-solutions

BCD20002-G Rev AG, 19-Jul-2018

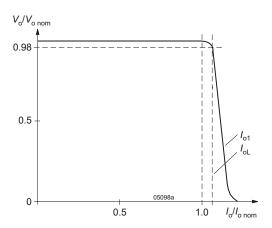


Fig. 9 Output characteristic V_o versus I_o (single-output models or double-output models with parallel-connected outputs).

Output Voltage Regulation

Figure 10 applies to single-output or double-output models with parallel-connected outputs.

For independent configuration, output 1 is under normal conditions regulated to $V_{o \text{ nom}}$, irrespective of the output currents.

 V_{02} depends upon the load distribution. If both outputs are loaded with more than 10% of $I_{0 \text{ nom}}$, the deviation of V_{02} remains within $\pm 5\%$ of V_{01} . Figures 11 to 13 show the regulation depending on load distribution.

Two outputs of a double-output model connected in parallel behave like the output of a single-output model.

Note: If output 2 is not used, connect it in parallel with output 1! This ensures good regulation and efficiency.

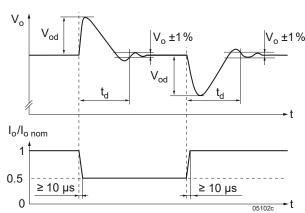


Fig. 10 Typical dynamic load regulation of V_o.

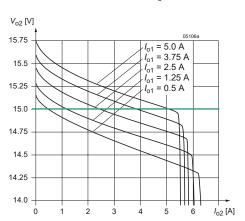


Fig. 12 Models with 2 outputs 15 V: V_{o2} versus I_{o2} with various I_{o1} (typ)

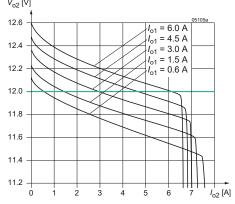


Fig. 11 Models with 2 outputs 12 V: V_{o2} versus I_{o2} with various I_{o1} (typ)

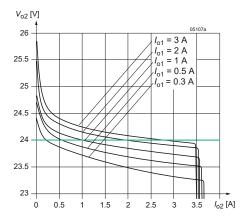


Fig. 13 Models with 2 outputs 24 V: V_{02} versus I_{02} with various I_{01} (typ)

Auxiliary Functions

Inhibit for Remote On/Off

The outputs may be enabled or disabled by means of a logic signal (TTL, CMOS, etc.) applied between the inhibit input i (pin 18) and pin 14 (S- or Vo1-). In systems with several converters, this feature can be used to control the activation sequence of the converters. If the inhibit function is not required, connect the inhibit pin 18 with pin 14!

Note: If pin 18 is not connected, the output is disabled.

Table 7: Inhibit characteristics

Cha	aracteristics		Conditions	min	typ	max	Unit
1/	Inhihit voltage	$V_{o} = on$	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	-50		8.0	V
V_{inh}	Inhibit voltage	$V_{\circ} = \text{off}$	$V_{\text{i min}} - V_{\text{i max}}$	2.4		50	V
I _{inh}	Inhibit current		V _{inh} = 0			-400	μΑ
t	Rise time				30		ma
t _f	Fall time		Dep	ending o	on I _o		ms

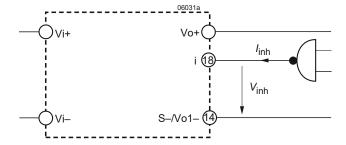
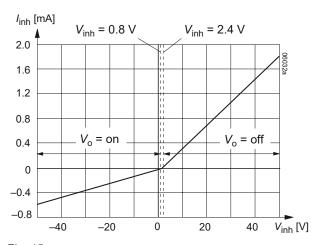
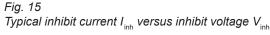




Fig. 14 Definition of $V_{\rm inh}$ and $I_{\rm inh}$.

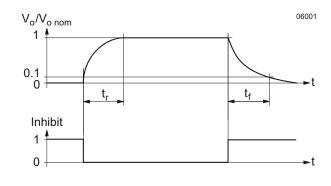


Fig. 16
Output response as a function of inhibit control

Sense Lines (Single Output Models)

Important: Sense lines must always be connected! Incorrectly connected sense lines may activate the overvoltage protection resulting in a permanent short-circuit of the output.

This feature allows for compensation of voltage drops across the connector contacts and if necessary, across the load lines. We recommend connecting the sense lines directly at the female connector.

To ensure correct operation, both sense lines (S+, S-) should be connected to their respective power outputs (Vo+ and Vo-), and the voltage difference between any sense line and its respective power output (as measured on the connector) should not exceed the following values:

Table 7: Maximum voltage compensation allowed using sense lines

Output voltage	Total voltage difference between sense lines and their respective outputs	Voltage difference between Vo- and S-
5.1 V	< 0.5 V	< 0.25 V
12 V, 15 V, 24 V	< 1.0 V	< 0.25 V

150 W DC-DC and AC-DC Converters

Programmable Output Voltage (R-Function)

As a standard feature, the converters offer an adjustable output voltage, identified by letter R in the type designation. The control input R (pin 16) accepts either a control voltage V_{ext} or a resistor R_{ext} to adjust the desired output voltage. When input R is not connected, the output voltage is set to $V_{\text{o nom}}$.

a) Adjustment by means of an external control voltage V_{ext} between pin 16 (R) and pin 14 (S-):

The control voltage range is 0 – 2.75 VDC and allows for an adjustment in the range of approximately 0 – 110% of $V_{o \text{ nom}}$.

$$V_{\rm ext} \approx \frac{V_{\rm o}}{V_{\rm oppm}} \cdot 2.5 \text{ V}$$

b) Adjustment by means of an external resistor:

Depending upon the value of the required output voltage, the resistor shall be connected

either: Between pin 16 and pin 14 to achieve an output voltage adjustment range of approximately 0-100% of $V_{o \text{ nom}}$. Between pin 16 and pin 12 to achieve an output voltage adjustment range of 100-110% of $V_{o \text{ nom}}$.

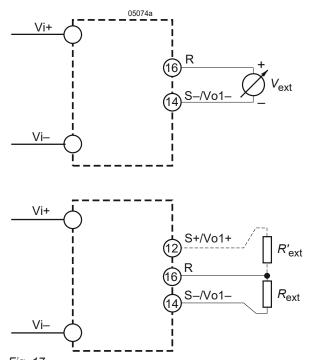


Fig. 17
Output voltage control for single-output models

Fig. 18 Double-output models: Wiring of the R-input for output voltages 24 V, 30 V, or 48 V with both outputs in series. A ceramic capacitor (C_{\circ}) across the load

Warnings:

- $-V_{\rm ext}$ shall never exceed 2.75 VDC.
- The value of $R'_{\rm ext}$ shall never be less than the lowest value as indicated in table $R'_{\rm ext}$ (for $V_{\rm 0} > V_{\rm 0\,nom}$) to avoid damage to the converter!

Notes

- The R-Function excludes option P (output voltage adjustment by potentiometer).
 - If the output voltages are increased above $V_{o \text{ nom}}$ via R-input control, option P setting, remote sensing, or option T, the output currents should be reduced, so that $P_{o \text{ nom}}$ is not exceeded.
- With double-output models, the second output follows the voltage of the controlled main output.
- In case of parallel connection the output voltages should be individually set within a tolerance of 1 2%.

Test Sockets

Test sockets (pin diameter 2 mm) for measuring the main output voltage V_{\circ} or $V_{\circ 1}$ are located at the front of the converter. The positive test socket is protected by a series resistor (see: *Functional Description, block diagrams*).

The voltage measured at the test sockets is slightly lower than the value at the output terminals.

tech.support@psbel.com belfuse.com/power-solutions

BCD20002-G Rev AG, 19-Jul-2018

K Series

150 W DC-DC and AC-DC Converters

Table 8a: R_{ext} for $V_{\text{o}} < V_{\text{o nom}}$; approximate values ($V_{\text{i nom}}$, $I_{\text{o nom}}$, series E 96 resistors); R'_{ext} = not fitted

V _{o nom} =	$V_{_{0 \text{ nom}}} = 5.1 \text{ V}$		V _{o nom} = 12 V			$V_{\text{o nom}} = 15 \text{ V}$			V _{o nom} = 24 V		
<i>V</i> _o [V]	$R_{\rm ext}$ [k Ω]	<i>V</i> _o	[V] ¹	$R_{\rm ext}$ [k Ω]	<i>V</i> _o	[V] 1	$R_{\rm ext}$ [k Ω]	<i>V</i> _o	[V] 1	$R_{\rm ext}$ [k Ω]	
0.5	0.432	2	4	0.806	2	4	0.619	4	8	0.81	
1.0	0.976	3	6	1.33	4	8	1.47	6	12	1.33	
1.5	1.65	4	8	2	6	12	2.67	8	16	2.0	
2.0	2.61	5	10	2.87	8	16	4.53	10	20	2.87	
2.5	3.83	6	12	4.02	9	18	6.04	12	24	4.02	
3.0	5.76	7	14	5.62	10	20	8.06	14	28	5.62	
3.5	8.66	8	16	8.06	11	22	11	16	32	8.06	
4.0	14.7	9	18	12.1	12	24	16.2	18	36	12.1	
4.5	30.1	10	20	20	13	26	26.1	20	40	20	
5.0	200	11	22	42.2	14	28	56.2	22	44	44.2	

Table 8b: R'_{ext} for $V_{\text{o}} > V_{\text{o nom}}$; approximate values ($V_{\text{i nom}}$, $I_{\text{o nom}}$, series E 96 resistors); $R_{\text{ext}} = \text{not fitted}$

V _{o nom} =	V _{o nom} = 5.1 V		V _{o nom} = 12 V			$V_{\text{o nom}} = 15 \text{ V}$			V _{o nom} = 24 V		
<i>V</i> _° [V]	R' _{ext} [kΩ]	<i>V</i> _° [[V] ¹	R' _{ext} [kΩ]	<i>V</i> _° [[V] 1	R' _{ext} [kΩ]	<i>V</i> _° [V] 1	R' _{ext} [kΩ]	
5.15	432	12.1	24.2	1820	15.2	30.4	1500	24.25	48.5	3320	
5.20	215	12.2	24.4	931	15.4	30.8	768	24.50	49.0	1690	
5.25	147	12.3	24.6	619	15.6	31.2	523	24.75	49.5	1130	
5.30	110	12.4	24.8	475	15.8	31.6	392	25.00	50.0	845	
5.35	88.7	12.5	25.0	383	16.0	32.0	316	25.25	50.5	698	
5.40	75	12.6	25.2	316	16.2	32.4	267	25.50	51.0	590	
5.45	64.9	12.7	25.4	274	16.4	32.8	232	25.75	51.5	511	
5.50	57.6	12.8	25.6	243	16.5	33.0	221	26.00	52.0	442	
		13.0	26.0	196				26.25	52.5	402	
		13.2	26.4	169				26.40	52.8	383	

¹ First column: V_0 or V_{01} ; second column: double-output models with series-connected outputs

Display Status of LEDs

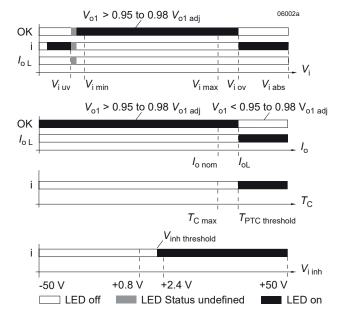


Fig. 19 LED indicators

LEDs "OK", "i" and " $I_{\rm o}$ " status versus input voltage Conditions: $I_{\rm o} \le I_{\rm o\ nom}$, $T_{\rm C} \le T_{\rm C\ max}$, $V_{\rm inh} \le 0.8\ {\rm V}$ $V_{\rm i\ uv}$ = undervoltage lock-out, $V_{\rm i\ ov}$ = overvoltage lock-out

LEDs "OK" and " $I_{\rm o\,L}$ " status versus output current Conditions: $V_{\rm i\,min} - V_{\rm i\,max'}$ $T_{\rm C} \le T_{\rm C\,max'}$ $V_{\rm inh} \le 0.8~{\rm V}$

LED "i" versus case temperature Conditions: $V_{\text{i min}} - V_{\text{i max}}$, $I_{\text{o}} \leq I_{\text{o nom}}$, $V_{\text{inh}} \leq 0.8 \text{ V}$

Battery Charging / Temperature Sensor

All converters with an R-input are suitable for battery charger applications, but we recommend choosing the models especially designed for this application DK/LK1740 or DK/LK2740; see *Model Selection*.

For optimal battery charging and life expectancy of the battery an external temperature sensor can be connected to the R-input. The sensor is mounted as close as possible to the battery and adjusts the output voltage according to the battery temperature.

Depending upon cell voltage and the temperature coefficient of the battery, different sensor types are available, see Accessories.

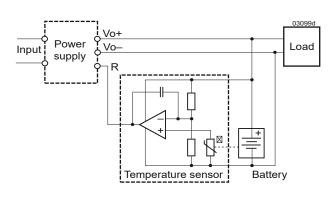


Fig. 20 Connection of a temperature sensor

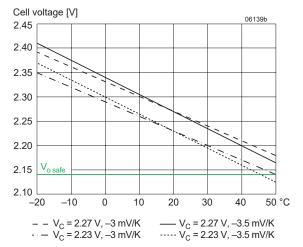


Fig. 21
Trickle charge voltage versus temperature for defined temp. coefficient. V_{o nom} is the output voltage with open R-input.

Electromagnetic Compatibility (EMC)

A metal oxide VDR together with the input fuse and an input filter form an effective protection against high input transient voltages, which typically occur in most installations. The converters have been successfully tested to the following specifications:

Electromagnetic Immunity

Table 9: Electromagnetic immunity (type tests)

Phenomenon	Standard	Level	Coupling mode 1	Value applied	Waveform	Source imped.	Test procedure	In oper.	Perf. crit. ²
Supply related	RIA 12 ³	A ⁴	+i/_i	3.5 V _{Bat}	2/20/2 ms	- 0.2 Ω	4		_
surge		В	+1/-1	1.5 V _{Bat}	0.1/1/0.1 s	0.212	1 positive surge	yes	Α
Direct transients		С		960 V _p	10/100 μs	- C			
		D ³		1800 V _D	5/50 µs	5 Ω			
		Е	+i/–i, –i/c	3600 V _p	0.5/5 μs			yes	
		F		4800 V _p	0.1/1 µs	1			
		G ³		8400 V _p	0.05/0.1 µs	1	5 pos. & 5 neg.		В
Indirect couples	1	Н		1800 V _p	5/50 µs	100 Ω			
transients		J		3600 V _p	0.5/5 µs]			
		K	+o/c, -o/c	4800 V _p	0.1/1 µs]			
		L		8400 V _p	0.05/0.1 µs]			
Electrostatic	IEC/EN 61000-4-2	4 5	contact discharge	±8000 V _p	1/50 ns	330 Ω	10 pos. & 10 neg. discharges	yes	Α
discharge (to case)		4 -	air discharge	±15000 V _p	1/50 118	150 pF		yes	
Electromagnetic	IEC/EN	X 6	antenna	20 V/m	AM 80% / 1 kHz	N/A	80 – 1000 MHz	yes	Α
field	61000-4-3	-3	antenna	20 V/m		N/A	800 – 1000 MHz		A
				10 V/m	AM 80% / 1 kHz		1400 – 2100 MHz	yes	
				5 V/m			2100 – 2500 MHz		
		3	antenna	10 V/m	50% duty cycle, 200 Hz rep. rate	N/A	900 ±5 MHz	yes	А
Electrical fast	IEC/EN	3 8	capacitive, o/c	±2000 V _p	bursts of 5/50 ns:		60 s positive		
transients / burst	61000-4-4	4	±i/c, +i/–i direct	±4000 V _p	2.5 / 5 kHz over 15 ms; burst period: 300 ms	50 Ω	60 s negative transients per coupling mode	yes	А
Surges	IEC/EN		±i/c	±2000 V _D		12 Ω	5 pos. & 5 neg.		
	61000-4-5	3 9	+i/—i	±1000 V _p	- 1.2 / 50 µs	2 Ω	surges per coupling mode	yes	Α
Conducted disturbances	IEC/EN 61000-4-6	3 10	i, o, signal wires	10 VAC (140 dBμV)	AM 80% / 1 kHz	150 Ω	0.15 – 80 MHz	yes	А
Power frequency magnetic field	IEC/EN 61000-4-8	3 11	-	300 A/m			60 s in all 3 axes	yes	А

- i = input, o = output, c = case
- A = normal operation, no deviation from specs.; B = temporary loss of function or deviation from specs possible
- ³ RIA 12 covers or exceeds IEC 60571-1 and EN 50155:2017. Surge D corresponds to EN 50155:2017, waveform A; surge G corresponds to EN 50155:2001, waveform B
- ⁴ Only met with extended input voltage range of CS (for 48 V battery) and ES (for 110 V battery) model types. Such CS models are available on customer's request. Standard DS models types (on 110 V battery) will shut down during the surge and recover automatically.
- Exceeds EN 50121-3-2:2015 table 6.3 and EN 50121-4:2016 table 2.4.
- ⁶ Corresponds to EN 50121-3-2:2015 table 6.1 and exceeds EN 50121-4:2016 table 2.1.
- ⁷ Corresponds to EN 50121-3-2:2015 table 6.2 and EN 50121-4:2016 table 2.2 (compliance with digital communication devices).
- ⁸ Corresponds or exceeds EN 50121-3-2:2015 table 4.2 and EN 50121-4:2016 table 4.2.
- Overs or exceeds EN 50121-3-2:2015 table 4.3 and EN 50121-4:2016 table 4.3.
- ¹⁰ Corresponds to EN 50121-3-2:2015 table 4.1 and EN 50121-4:2016 table 4.1 (radio frequency common mode).
- ¹¹ Corresponds to EN 50121-4:2016 table 2.3.

Electromagnetic Emissions

Fig. 22a Conducted emissions (peak/quasipeak and average) at the phase input according to EN 55011/32, measured at $V_{\rm inom}$ and $I_{\rm onom}$ (BK1601-9R). The neutral line performs quite similar.

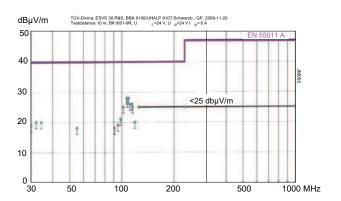


Fig. 23a Typical radiated emissions according to EN 55011/32, antenna 10 m distance, measured at $V_{\rm i\,nom}$ and $I_{\rm o\,nom}$ (BK1601-9R)

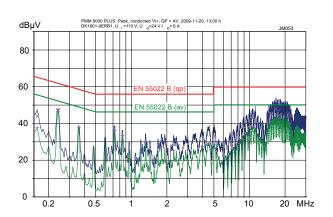


Fig. 22b Conducted emissions (peak/quasipeak and average) at the phase input according to EN 55011/32, measured at $V_{\rm inom}$ and $I_{\rm onom}$ (DK1601-9ERB1). The neutral line performs quite similar.

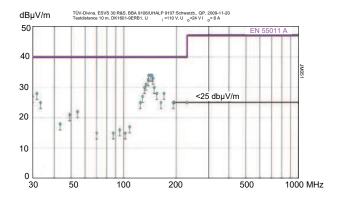


Fig. 23b Typical radiated emissions according to EN 55011/32, antenna 10 m distance, measured at $V_{\rm i\,nom}$ and $I_{\rm o\,nom}$ (DK1601-9ERB1)

Immunity to Environmental Conditions

Table 10: Mechanical and climatic stress

Test ı	method	Standard	Test Conditions		Status	
Cab	Damp heat	IEC/EN 60068-2-78	Temperature:	40 ±2 °C		
	steady state	MIL-STD-810D section 507.2	Relative humidity:	93 +2/-3 %	Converter not operating	
			Duration:	56 days	not operating	
Kb	Salt mist, cyclic	IEC/EN 60068-2-52	Concentration:	5% (30 °C) for 2 h		
	sodium chloride (NaCl) solution		Storage:	40 °C, 93% rel. humidity	Converter not operating	
	(NaCi) solution		Duration:	3 cycles of 22 h	not operating	
Fc	Vibration	IEC/EN 60068-2-6	Acceleration amplitude:	0.35 mm (10 – 60 Hz)		
	(sinusoidal)	MIL-STD-810D section 514.3		$5 g_n = 49 \text{ m/s}^2 (60 - 2000 \text{ Hz})$	Converter	
			Frequency (1 Oct/min):	10 – 2000 Hz	operating	
			Test duration:	7.5 h (2.5 h in each axis)		
Fh	Random vibration	IEC/EN 60068-2-64	Acceleration spectral density:	0.05 g _n ² /Hz		
	broad band (digital control) & guidance		Frequency band:	8 – 500 Hz	Converter	
	Control) & guidance		Acceleration magnitude:	4.9 g _{n rms}	operating	
			Test duration:	1.5 h (0.5 h in each axis)		
Ea	Shock	IEC/EN 60068-2-27	Acceleration amplitude:	$50 g_n = 490 \text{ m/s}^2$		
	(half-sinusoidal)	MIL-STD-810D section 516.3	Bump duration:	11 ms	Converter operating	
			Number of bumps:	18 (3 in each direction)	operating	
-	Shock	EN 50155:2007 clause 12.2.11,	Acceleration amplitude:	5.1 g _n		
		EN 61373 sect. 10, class B, body mounted ¹	Bump duration:	30 ms	Converter operating	
		oldoo B, body modified	Number of bumps:	18 (3 in each direction)	operating	
-	Simulated long life	EN 50155:2007 clause 12.2.11,	Acceleration spectral density:	0.02 g _n ² /Hz		
	testing at increased random vibration	EN 61373 sect. 8 and 9, class B, body mounted ¹	Frequency band:	5 – 150 Hz	Converter	
	levels		Acceleration magnitude:	$0.8 g_{n rms}$	operating	
			Test duration:	15 h (5 h in each axis)		

¹ Body mounted = chassis of a railway coach

Temperatures

Table 11: Temperature specifications, valid for an air pressure of 800 – 1200 hPa (800 – 1200 mbar)

Model		-5 ²		-6 ²		-7 (option)		-9		Unit	
Characteristics		Conditions	min	max	min	max	min	max	min	max	
T _A	Ambient temperature	Converter operating	- 25	50	- 25	60	- 25	71	- 40	71	
T _C	Case temperature 1		- 25	85 ¹	- 25	90 ¹	- 25	95 ¹	- 40	95 ¹	°C
T _s	Storage temperature	Not operating	- 40	85	- 40	85	- 40	85	- 55	85	

 $^{^{1}}$ Overtemperature lockout at $T_{\rm c}$ > 95 $^{\circ}$ C

Reliability and Device Hours

Table 12: MTBF calculated according to MIL-HDBK 217F

Ratings at specified	Model	Ground benign	Ground fixed		Ground mobile	Unit		
case temperature		40 °C	40 °C	70 °C	50 °C			
MTBF ¹	LK2660-7	514 000	88 000	38 000	35 000	h		
Device hours ²	AK – LK		500 000					

Calculated according to MIL-HDBK-217F-N2

Statistic values, based on an average of 4300 working hours per year, over 3 years in general field use.

² Customer-specific models

Mechanical Data

Dimensions in mm. The converters are designed to be inserted into a 19" rack, 160 mm long, according to IEC 60297-3.

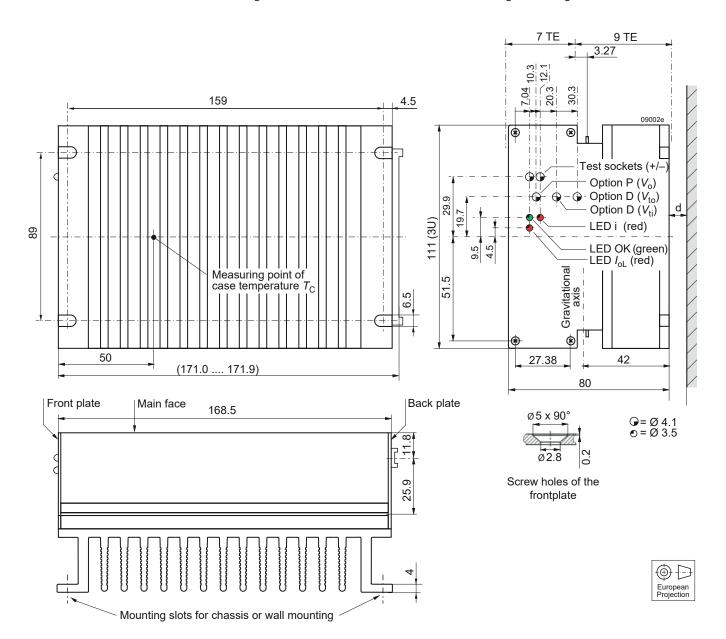


Fig. 24
Aluminum case K02 with heat sink; black finish (EP powder coated); weight approx. 1.6 kg

Notes:

- d \geq 15 mm, recommended minimum distance to next part in order to ensure proper air circulation at full output power.
- free air location: the converter should be mounted with fins in a vertical position to achieve maximum airflow through the heat sink.

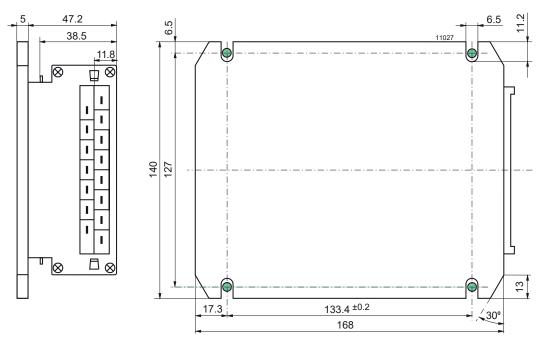
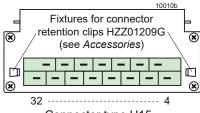
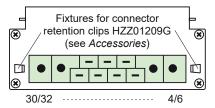


Fig. 25
Option B: Aluminum case K02 with large cooling plate; black finish (EP powder coated).
Suitable for front mounting.
Total weight approx. 1.3 kg

Fig. 26
Option B1: Aluminum case K02 with small cooling plate; black finish (EP powder coated). Suitable for mounting with access from the backside.
Total weight approx. 1.2 kg.

Note: Long case with option B2, elongated by 60 mm for 220 mm rack depth, is available on request (no LEDs, no test sockets).




Safety and Installation Instructions

Connector Pin Allocation

The connector pin allocation table defines the electrical potentials and the physical pin positions on the H15 or H15-S4 connector. The protective earth is connected by a leading pin (no. 24), ensuring that it makes contact with the female connector first.

Connector type H15

Connector type H15S4

Fig. 27 View of module's male connectors

Table 13: H15 and H15-S4 connector pin allocation

Pin	Connecto	or type H15-S4			Connector type H15					
No.	AK1000 (a	**	AK2000		BK - LK1301		BK - LK200	0		
	BK - LK1	001 except opt. K			BK - LK1001	with opt. K				
4	Vo+	Positive Output 1	Vo2+	Positive Output 2	Vo+	Positive Output 1	Vo2+	Positive Output 2		
6	VO1	1 ositive Output 1	V021	1 Oslive Output 2	Vo+	1 ositive Output 1	Vo2+	1 ositive Output 2		
8	Vo-	Negative Output 1	1/02	Negative Output 2	Vo-	Negative Output 1	Vo2-	Negative Output 2		
10	7 00-	Negative Output 1	Vo2-	Negative Output 2	Vo-	Negative Output 1	Vo2-	Negative Output 2		
12	S+	Sense positive	Vo1+	Positive Output 1	S+	Positive Sense	Vo1+	Positive Output 1		
14	S1-	S1- Sense negative Vo1- Negative Output 1 S1-		S1-	Negative Sense	Vo1-	Negative Output 1			
16	R¹	Control of V _o	R ¹ Control V _{o1} R ¹		R¹	Control of V _o	R¹	Control V _{o1}		
18	i	Inhibit	i	Inhibit	i	Inhibit	i	Inhibit		
20	D ³	Save data	D 3	50 0 11	D ³	Save data	D ³	Causa data		
20	V 3	ACFAIL	ا ل	Save data	D°		ا ا	Save data		
22	T5	Current sharing	T ⁵	Current sharing	T ⁵	Current sharing	T ⁵	Current sharing		
24 ²	(4)	Protective earth	4	Protective earth	(1)	Protective earth	(Protective earth		
26) () () ()	Positive Input	\ r.	5	Vi+ N≂⁴	Positive Input	Vi+ N≂⁴	Positive Input		
28	Vi+ N≂⁴	Neutral line ⁴	Vi+	Positive Input	Vi+ N≂⁴	Neutral line ⁴	Vi+ N≂⁴	Neutral line ⁴		
30	Vi- L≂⁴ ⊢	Negative Input	\ /:	No. of the land	Vi- L≂⁴	Negative Input	Vi- L≂⁴	Negative Input		
32		Phase line ⁴	Vi-	Negative Input	Vi- L≂⁴	Phase line ⁴	Vi- L≂⁴	Phase line 4		

¹ Not connected, if option P is fitted.

⁵ Only connected, if option T is fitted.

² Leading pin (pre-connecting)

Option D excludes option V and vice versa. Pin 20 is not connected, unless option D or V is fitted.

⁴ LK models

Installation Instructions

Note: These converters have no power factor correction (PFC). The LK4000/5000 models are intended to replace the LK1000 and LK2000 converters in order to comply with IEC/EN 61000-3-2. LK1000 is replaced by LK4003 with option K.

The converters are components, intended exclusively for inclusion within other equipment by an industrial assembly operation or by professional installers. Installation must strictly follow the national safety regulations in compliance with the enclosure, mounting, creepage, clearance, casualty, markings, and segregation requirements of the end-use application.

Connection to the system shall be made via the female connector H15 (standard) or H15S4; see *Accessories*. Other installation methods may not meet the safety requirements.

Pin no. 24 (*) is connected with the case. For safety reasons it is essential to connect this pin reliably to protective earth.

The input pins 30/32 (Vi– or L \approx) are connected via a built-in fuse, which is designed to protect in the case of a converter failure. An additional external fuse, suitable for the application, might be necessary in the wiring to the other input 26/28 (Vi+ or N \approx) or even to pins 30/32, particularly if:

- · Local requirements demand an individual fuse in each source line
- Phase and neutral of the AC mains are not defined or cannot be assigned to the corresponding terminals.
- · Neutral and earth impedance is high or undefined

Notes

- If the inhibit function is not used, pin no. 18 (i) should be connected with pin no. 14 to enable the output(s).
- Do not open the converters, or warranty will be invalidated.
- Due to high current values, the converters provide two internally parallel contacts for certain paths (pins 4/6, 8/10, 26/28 and 30/32). It is
 recommended to connect both female connector pins of each path in order to keep the voltage drop low and avoid excessive connector
 currents.
- If the second output of double-output models is not used, connect it parallel with the main output.

Make sure that there is sufficient airflow available for convection cooling and verify it by measuring the case temperature T_c , when the converter is installed and operated in the end-use application; see *Thermal Considerations*.

Ensure that a converter failure (e.g., an internal short-circuit) does not result in a hazardous condition.

Standards and Approvals

The converters are safety-approved according to the latest edition of IEC/EN 60950-1 and UL/CSA 60950-1.

The converters correspond to Class I equipment and have been evaluated for:

- Building-in
- · Basic insulation between input and case based on 250 VAC, and double or reinforced insulation between input and output(s)
- · Functional insulation between outputs
- · Overvoltage category II
- · Pollution degree 2 environment
- · Max. altitude: 2000 m
- The converters fulfil the requirements of a fire enclosure.

The converters are subject to manufacturing surveillance in accordance with the above mentioned standards and ISO 9001:2015. A CB-scheme is available.

Railway Applications and Fire Protection

The converters have been designed by observing the railway standards EN 50155, EN 50121-3-2, and EN 50121-4. All boards are coated with a protective lacquer.

The converters with version V108 (or later, but not models with H15S4 connector: 5 V output without option K) comply with NF-F16 (I2/F1). They also comply with EN 45545-1, EN 45545-2 (2016), if installed in a technical compartment or cabinet.

Protection Degree and Cleaning Liquids

Condition: Female connector fitted to the converter.

- IP 30: All models except those with option P, and except those with option D or V including a potentiometer.
- IP 20: All models fitted with option P, or with option D or V with potentiometer.

In order to avoid damage, any penetration of cleaning fluids has to be prevented, since the power supplies are not hermetically sealed.

Isolation and Protective Earth

The electric strength test is performed in the factory as routine test in accordance with EN 50514 and IEC/EN 60950. The company will not honor any warranty claims resulting from incorrectly executed electric strength field tests. The resistance between earth connection and case ($<0.1~\Omega$) is tested as well.

Table 14: Isolation

Characteristics		Input to Case + Output(s)	Output(s) to Case	Output 1 to Output 2	Unit
Electric strength test	Factory test 10 s	2.8 ¹	1.4	0.15	kVDC
	AC test voltage equivalent to factory test	2.0 1	1.0	0.1	kVAC
Insulation resistance a	t 500 VDC	>300	>300	>100 ²	МΩ
Creepage distances		≥ 3.2 ³			mm

- According to EN 50514 and IEC/EN 60950, subassemblies connecting input to output are pre-tested with 5.6 kVDC or 4 kVAC.
- ² Tested at 150 VDC
- 3 Input to outputs: 6.4 mm

Leakage Currents

Leakage currents flow due to internal leakage capacitances and Y-capacitors. The current values are proportional to the supply voltage and are specified in the table below.

Table 15: Earth leakage currents for LK models

Characteristics	Class I	Unit	
Max. leakage current	Max. leakage current Permissible accord. to IEC/EN 60950		A
	Typ. value at 264 V, 50 Hz	1.43	mA

LK Models Operated at Greater than 63 Hz

Above 63 Hz, the earth leakage current may exceed 3.5 mA, the maximum value allowed in IEC 60950. Frequencies \geq 350 Hz only permitted with $V_i \leq$ 200 VAC.

The built-in Y-caps are approved for ≤100 Hz. Safety approvals and CB scheme cover only 50 – 60 Hz.

Safety of Operator-Accessible Output Circuits

If the output circuit of a DC-DC converter is operator-accessible, it shall be an SELV circuit according to the standard IEC 60950-1.

The following table shows some possible installation configurations, compliance with which causes the output circuit of the converter to be an SELV circuit according to IEC 60950-1 up to a configured output voltage (sum of nominal voltages if in series or +/- configuration) of 36 V.

However, it is the sole responsibility of the installer to assure the compliance with the rapplicable safety regulations.

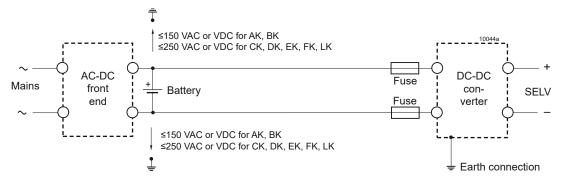


Fig. 28
Schematic safety concept.
Use earth connections as per the table below.

Table 16: Safety concept leading to an SELV output circuit

Conditions	Front end			DC-D0	Converter	Result
Nominal supply voltage	Minimum required grade of insulation, to be provided by the AC-DC front end, including mains supplied battery charger	Nominal DC output voltage from the front end	Minimum required safety status of the front end output circuit	Types	Measures to achieve the specified safety status of the output circuit	Safety status of the DC-DC converter output circuit
Mains ≤150 VAC	Functional (i.e. there is no need for electrical insulation between the mains supply	≤ 100 V (The nominal voltage between any input pin and earth can be up to 150 VAC or DC)	Primary circuit	AK BK	Double or reinforced insulation, based on the mains voltage and ² (provided by the DC-DC converter) and earthed case ³	SELV circuit
Mains ≤ 250 VAC	voltage and the DC-DC converter input voltage)	≤ 400 V (The nominal voltage between any input pin and earth can be up to 250 VAC or 400 VDC)		CK DK EK FK		
	Basic	≤ 400 V	Unearthed hazardous voltage secondary circuit	AK BK CK DK	Supplementary insulation, based on 250 VAC and double or reinforced insulation ² (provided by DC-DC converter) and earthed case ³ .	
			Earthed hazardous voltage secondary circuit	EK FK	Double or reinforced insulation ² (provided by the DC-DC converter) earthed case ³	
	Double or reinforced	≤ 60 V	SELV circuit		Functional insulation (provided by the DC-DC converter) ⁴	
		≤ 120 V	TNV-3 circuit		Basic insulation (provided by the DC-DC converter) ⁴	

- 1 The front end output voltage should match the specified input voltage range of the DC-DC converter.
- ² Based on the maximum nominal output voltage from the front end.
- The earth connection has to be provided by the installer according to the relevant safety standard, e.g. IEC/EN 60950-1.
- ⁴ Earthing of the case is recommended, but not mandatory.

If the output circuit of an AC-DC converter is operator-accessible, it shall be an SELV circuit according to standard IEC 60950-1.

The following table shows some possible installation configurations, compliance with which causes the output circuit of **LK models** to be SELV according to IEC 60950-1 up to a configured output voltage (sum of nominal voltages if in series or +/– configuration) of 36 V. If the LK converter is used as DC-DC converter, refer to the previous section.

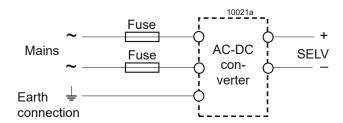


Fig. 29
Schematic safety concept. Use earth connection as per table 17. Use fuses if required by the application; see also Instal. Instructions.

Table 17: Safety concept leading to an SELV output circuit

Conditions	AC-DC converter	Installation	Result
Nominal voltage	Grade of insulation between input and output provided by the AC-DC converter	Measures to achieve the resulting safety status of the output circuit	Safety status of the AC-DC converter output circuit
Mains ≤ 250 VAC	Double or reinforced	Earthed case¹ and installation	SELV circuit

¹ The earth connection has to be provided by the installer according to the relevant safety standards, e.g. IEC/EN 60950.

