

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

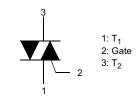
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



FKN2L60

Application Explanation

- Switching mode power supply, light dimmer, electric flasher unit, hair drier
- TV sets, stereo, refrigerator, washing machine
- Electric blanket, solenoid driver, small motor control
- Photo copier, electric tool

Bi-Directional Triode Thyristor Planar Silicon

Absolute Maximum Ratings T_C=25°C unless otherwise noted

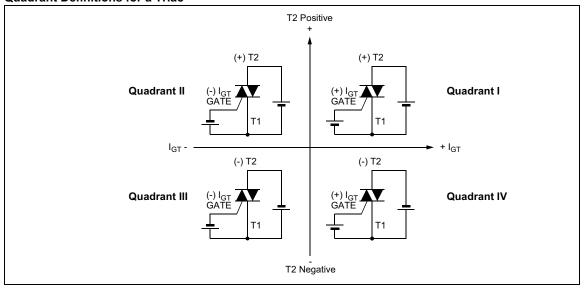
Symbol	Parameter	Rating	Units
V_{DRM}	Repetitive Peak Off-State Voltage (Note1)	600	V

Symbol	Parameter	Conditions		Rating	Units
I _{T (RMS)}	RMS On-State Current	Commercial frequency, sine full wave 360° conduction, Tc=65 ℃		1.5	Α
I _{TSM}	Surge On-State Current	Sinewave 1 full cycle, peak value, non-repetitive 50Hz		9	Α
				10	Α
l ² t	I ² t for Fusing	Value corresponding to 1 cycle of halfwave, surge on-state current, tp=10ms		0.4	A ² s
di/dt	Critical Rate of Rise of On-State Current	I _G = 2x I _{GT} , tr ≤ 100ns		50	A/μs
P _{GM}	Peak Gate Power Dissipation			1	W
P _{G (AV)}	Average Gate Power Dissipation		0.1	W	
V_{GM}	Peak Gate Voltage		6	V	
I _{GM}	Peak Gate Current	eak Gate Current		0.5	Α
T _J	Junction Temperature			- 40 ~ 125	°C
T _{STG}	Storage Temperature			- 40 ~ 125	°C

Thermal Characteristic

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units
R _{th(J-C)}	Thermal Resistance	Junction to case (Note 4)	-	-	40	°C/W

©2004 Fairchild Semiconductor Corporation Rev. A, April 2004


$\textbf{Electrical Characteristics} \ \, \textbf{T}_{\text{C}} = 25^{\circ} \text{C unless otherwise noted}$

Symbol	Parameter		Test Condition		Min.	Тур.	Max.	Units
I _{DRM}	Repetieive Peak Off-State Current		V _{DRM} applied		-	-	20	μΑ
V _{TM}	On-State Voltage		T _C =25°C, I _{TM} =3A Instantaneous measurement		-	-	1.6	V
	41.4.0	I		T2(+), Gate (+)	-	-	1.5	V
V_{GT}	Gate Trigger Voltage (Note 2)	II	V_D =12V, R_L =20 Ω	T2(+), Gate (-)	-	-	1.5	V
		III		T2(-), Gate (-)	-	-	1.5	V
		I		T2(+), Gate (+)	-	-	5	mA
I_{GT}	Gate Trigger Current (Note 2)	II	V_D =12V, R_L =20 Ω	T2(+), Gate (-)	-	-	5	mA
		III		T2(-), Gate (-)	-	-	5	mA
V _{GD}	Gate Non-Trigger Voltage		T _J =125°C, V _D =1/2V _{DRM}		0.2	-	-	V
I _H	Holding Current		V _D = 12V, I _{TM} = 1A		-	-	10	mA
IL	Latching Current	I, III	$V_D = 12V, I_G = 1.2I_{GT}$		-	-	10	mA
		II			-	-	10	mA
dv/dt	Critical Rate of Rise of Off-State Voltag		V_{DRM} = Rated, T_j = 125°C, Exponential Rise		500	-	-	V/µs
(dv/dt) _C	Critical-Rate of Rise of Off-State Commutating Voltage (Note 3)				5	-	-	V/µs

- Notes:
 1. Gate Open
 2. Measurement using the gate trigger characteristics measurement circuit
 3. The critical-rate of rise of the off-state commutating voltage is shown in the table below
 4. Case temperature is measured at the T2 terminal 1.5mm away from the molded case.

V _{DRM} (V)	Test Condition	Commutating voltage and current waveforms (inductive load)
FKN2L60	1. Junction Temperature T _J =125°C 2. Rate of decay of on-state commutating current (di/dt) _C = - 0.5A/ms 3. Peak off-state voltage V _D = 400V	Supply Voltage Main Current Main Voltage (dv/dt) Time

Quadrant Definitions for a Triac

Typical Curves

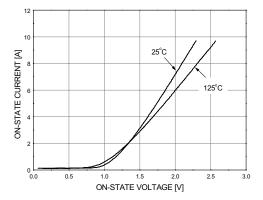


Figure 1. Maximum On-state Characteristics

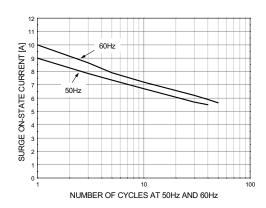


Figure 2. Rated Surge On-state Current

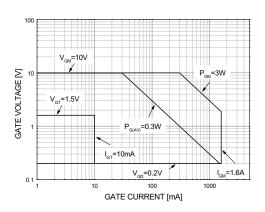


Figure 3. Gate Characteristics

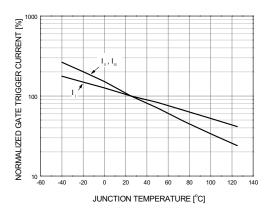


Figure 4. Gate Trigger Current vs Tj

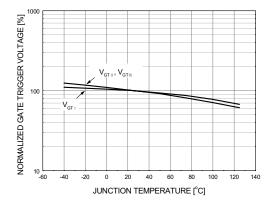


Figure 5. Gate Trigger Voltage vs Tj

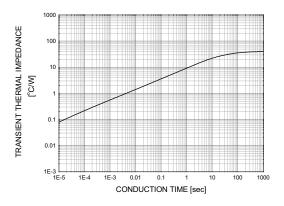


Figure 6. Transient Thermal Impedance

Rev. A, April 2004

©2004 Fairchild Semiconductor Corporation

Typical Curves (Continues)

Figure 7. Allowable Case, Ambient Temperature vs Rms On-state Current

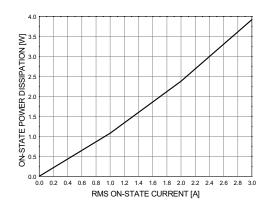


Figure 8. Maximum On-state Power Dissipation

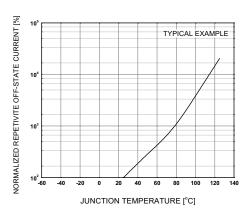


Figure 9. Repetitive Peak Off-state Current vs Junction Temperature

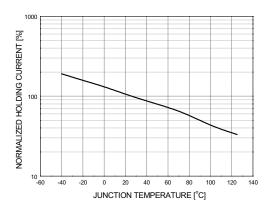


Figure 10. Holding Current vs
Junction Temperature

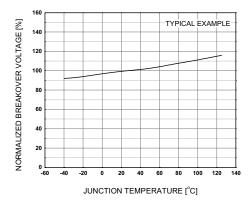


Figure 11. Breakover Voltage vs Junction Temperature

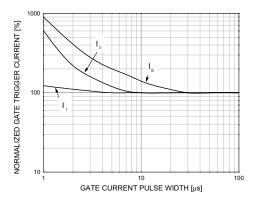
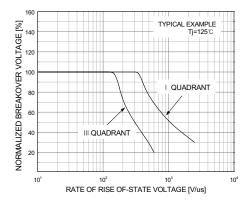
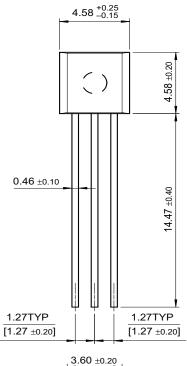
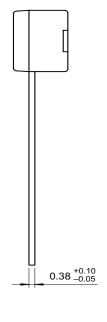


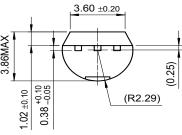
Figure 12. Gate Trigger Current vs
Gate Current Pulse Width

©2004 Fairchild Semiconductor Corporation Rev. A, April 2004

Typical Curves (Continues)


Figure 13. Breakover Voltage vs Rate of Rise of Off-state Voltage


©2004 Fairchild Semiconductor Corporation Rev. A, April 2004

Package Dimension

TO-92

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	FACT Quiet Series™	ImpliedDisconnect™	PACMAN™	SPM™
ActiveArray™	FAST®	ISOPLANAR™	POP™	Stealth™
Bottomless™	FASTr™	LittleFET™	Power247™	SuperFET™
CoolFET™	FPS™	MICROCOUPLER™	PowerSaver™	SuperSOT™-3
CROSSVOLT™	FRFET™	MicroFET™	PowerTrench®	SuperSOT™-6
DOME™	GlobalOptoisolator™	MicroPak™	QFET®	SuperSOT™-8
EcoSPARK™	GTO™ .	MICROWIRE™	QS™	SyncFET™
E ² CMOS™	HiSeC™	MSX™	QT Optoelectronics™	TinyLogic [®]
EnSigna™	I ² C™	MSXPro™	Quiet Series™	TINYOPTO™
FACT™	i-Lo™	OCX™	RapidConfigure™	TruTranslation™
Across the boar	d. Around the world.™	OCXPro™	RapidConnect™	UHC™
The Power Franchise®		OPTOLOGIC®	SILENT SWITCHER®	UltraFET [®]
Programmable Active Droop™		OPTOPLANAR™	SMART START™	VCX™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification Product Status		Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.