imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

FAIRCHILD

SEMICONDUCTOR®

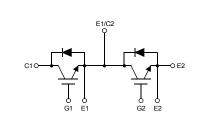
FMG2G75US120

Molding Type Module

General Description

Fairchild IGBT Power Module provides low conduction and switching losses as well as short circuit ruggedness. It's designed for the applications such as motor control, uninterrupted power supplies (UPS) and general inverters where short-circuit ruggedness is required.

Features


- Short Circuit Rated Time; 10us @ T_C =100°C, V_{GE} = 15V
- High Speed Switching
- Low Saturation Voltage : $V_{CE(sat)}$ = 2.6 V @ I_C = 75A
- High Input Impedance
- Fast & Soft Anti-Parallel FWD
- UL Certified No.E209204

Application

- AC & DC Motor Controls
- General Purpose Inverters
- Weldings
- Servo Controls
- UPS

Package Code : 7PM-GA

Internal Circuit Diagram

Absolute Maximum Ratings T_c = 25°C unless otherwise noted

Symbol	Description	FMG2G75US120	Units	
V _{CES}	Collector-Emitter Voltage	1200	V	
V _{GES}	Gate-Emitter Voltage		± 20	V
I _C	Collector Current	75	А	
I _{CM (1)}	Pulsed Collector Current	150	А	
I _F	Diode Continuous Forward Current	75	А	
I _{FM}	Diode Maximum Forward Current		150	А
P _D	Maximum Power Dissipation		445	W
T _{SC}	Short Circuit Withstand Time	@ T _C = 100°C	10	us
TJ	Operating Junction Temperature		-40 to +150	°C
T _{STG}	Storage Temperature Range		-40 to +125	°C
V _{ISO}	Isolation Voltage	@ AC 1minute	2500	V
Mounting Torque	Power Terminal Screw : M5		4.0	N.m
Mounting Torque Mounting Screw : M5			4.0	N.m

Notes :

(1) Repetitive rating : Pulse width limited by max. junction temperature

IGBT

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
Off Cha	racteristics					
BV _{CES}	Collector-Emitter Breakdown Voltage	V _{GE} = 0V, I _C = 3mA	1200			V
ΔB _{VCES} / ΔT _J	Temperature Coeff. of Breakdown Voltage	V _{GE} = 0V, I _C = 1mA		0.6		V/°C
ICES	Collector Cut-Off Current	$V_{CE} = V_{CES}, V_{GE} = 0V$			3	mA
I _{GES}	Gate - Emitter Leakage Current	$V_{GE} = V_{GES}, V_{CE} = 0V$			± 100	nA
V _{GE(th)}	Gate - Emitter Threshold Voltage	$I_{C} = 75 \text{mA}, V_{CE} = V_{GE}$	5.0	7.0	8.5	V
V _{CE(sat)}	Collector to Emitter Saturation Voltage	I _C = 75A, V _{GE} = 15V		2.6	3.0	V
Switchi	ng Characteristics					
	ng Characteristics Turn-On Delay Time			75		ns
t _{d(on)}	Turn-On Delay Time Rise Time	V., - 600 V I75A		75 80		ns ns
t <mark>d(on)</mark> tr td(off)	Turn-On Delay Time Rise Time Turn-Off Delay Time	V _{CC} = 600 V, I _C =75A, Bo = 100 Vor = 15V	 	80 295		
t _{d(on)} t _r t _{d(off)} t _f	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time	$V_{CC} = 600 \text{ V}, \text{ I}_{C} = 75\text{A},$ $R_{G} = 10\Omega, V_{GE} = 15\text{V},$ Inductive Load, $T_{C} = 25^{\circ}\text{C}$	 	80 295 50		ns ns ns
t _{d(on)} t <u>r</u> t _{d(off)} t _f E _{on}	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss	R _G = 10Ω, V _{GE} = 15V,	 	80 295 50 6.9	 150 	ns ns ns mJ
t _{d(on)} t _r t _{d(off)} t _f E _{on} E _{off}	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss	R _G = 10Ω, V _{GE} = 15V,	 	80 295 50 6.9 4.3	 150	ns ns ns mJ mJ
t _{d(on)} t _r t _{d(off)} t _f E _{on} E _{off} t _{d(on)}	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Turn-On Delay Time	R _G = 10Ω, V _{GE} = 15V,	 	80 295 50 6.9 4.3 80	 150 	ns ns ns mJ mJ ns
t _{d(on)} t _r t _{d(off)} t _f E _{on} E _{off} t _{d(on)} t _r	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Turn-On Delay Time Rise Time	$R_G = 10\Omega$, $V_{GE} = 15V$, Inductive Load, $T_C = 25^{\circ}C$	 	80 295 50 6.9 4.3 80 80	 150 	ns ns mJ mJ ns ns
t _{d(on)} tr (d(off) t f Eon Eoff t d(on) tr t (off)	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time	R _G = 10Ω, V _{GE} = 15V,	 	80 295 50 6.9 4.3 80 80 310	 150 	ns ns mJ mJ ns ns ns
t _{d(on)} t _r t _{d(off)} t _f E _{on} E _{off} t _{d(on)} t _r t _{d(off)} t _f	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-Off Delay Time Fall Time	$R_G = 10\Omega$, $V_{GE} = 15V$, Inductive Load, $T_C = 25^{\circ}C$ $V_{CC} = 600$ V, $I_C = 75A$,	 	80 295 50 6.9 4.3 80 80 310 70	 150 	ns ns mJ mJ ns ns ns ns
t _{d(on)} t _r t _d (off) E _{on} E _{off} t _{d(on)} t _r t _{d(off)} t _f E _{on}	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-Off Delay Time Fall Time Turn-On Switching Loss	$R_{G} = 10\Omega, V_{GE} = 15V,$ Inductive Load, $T_{C} = 25^{\circ}C$ $V_{CC} = 600 V, I_{C} = 75A,$ $R_{G} = 10\Omega, V_{GE} = 15V,$	 	80 295 50 6.9 4.3 80 80 310 70 8.4	 150 	ns ns mJ mJ ns ns ns ns ns mJ
t _{d(on)} tr t d(off) t Eon Eoff t d(on) tr t d(off) t f	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-Off Switching Loss Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss	$R_{G} = 10\Omega, V_{GE} = 15V,$ Inductive Load, T _C = 25°C $V_{CC} = 600 V, I_{C} = 75A,$ $R_{G} = 10\Omega, V_{GE} = 15V,$ Inductive Load, T _C = 125°C	 	80 295 50 6.9 4.3 80 80 310 70	 150 	ns ns mJ mJ ns ns ns ns
d(on) r d(off) f on off d(on) r d(off) f f on	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-Off Delay Time Fall Time Turn-On Switching Loss	$R_{G} = 10\Omega, V_{GE} = 15V,$ Inductive Load, $T_{C} = 25^{\circ}C$ $V_{CC} = 600 V, I_{C} = 75A,$ $R_{G} = 10\Omega, V_{GE} = 15V,$	 	80 295 50 6.9 4.3 80 80 310 70 8.4	 150 	ns ns mJ mJ ns ns ns ns ns mJ

Electrical Characteristics of DIODE T_C = 25°C unless otherwise noted

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit s
V	Diodo Eonward Voltago	I _F = 75A	$T_{C} = 25^{\circ}C$		2.3	3.0	v
V _{FM}	Diode Forward Voltage	1 _F = 75A	T _C = 125°C		2.2		v
+	Diode Reverse Recovery Time		$T_{C} = 25^{\circ}C$		150		ns
t _{rr}	Didde Reverse Recovery fille		T _C = 125°C		225		115
1	Diode Peak Reverse Recovery	I _F = 75A	T _C = 25°C		47		A
Irr	Current	di / dt = 1000 A/us	T _C = 125°C		61		A
0	Diada Bayaraa Baaayary Charga		$T_C = 25^{\circ}C$		3525		nC
Q _{rr}	Diode Reverse Recovery Charge		T _C = 125°C		6863		IC

 $V_{\rm CE}$ = 300 V, $I_{\rm C}$ =75A, $V_{\rm GE}$ = 15V

Thermal Characteristics

Total Gate Charge

Gate-Emitter Charge

Gate-Collector Charge

Symbol	Parameter	Тур.	Max.	Units
R _{θJC}	Junction-to-Case (IGBT Part, per 1/2 Module)		0.28	°C/W
R _{0JC}	Junction-to-Case (DIODE Part, per 1/2 Module)		0.34	°C/W
$R_{\theta JC}$	Case-to-Sink (Conductive grease applied)	0.035		°C/W
Weight	Weight of Module	240		g

FMG2G75US120

©2004 Fairchild Semiconductor Corporation

 Q_g

 Q_{ge}

Q_{gc}

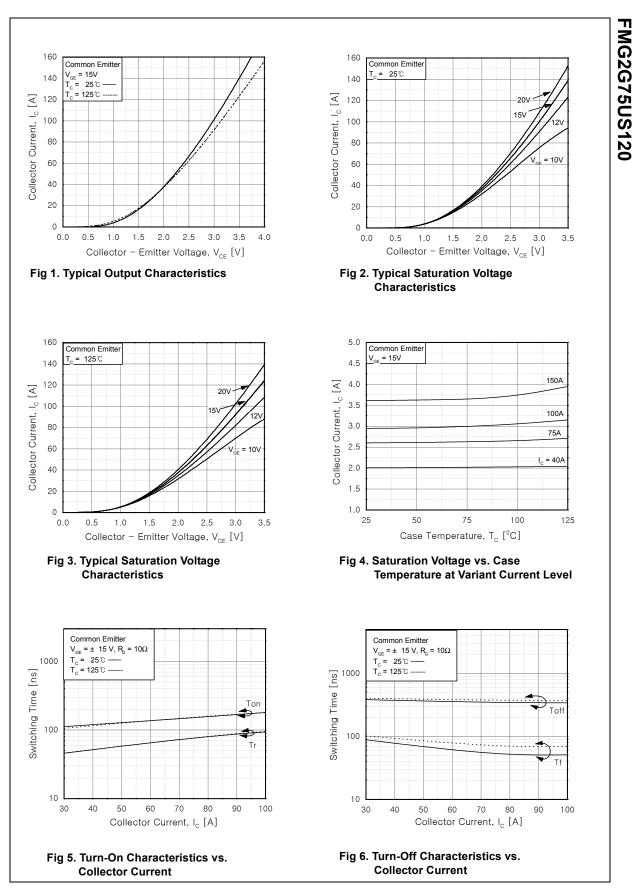
570

90

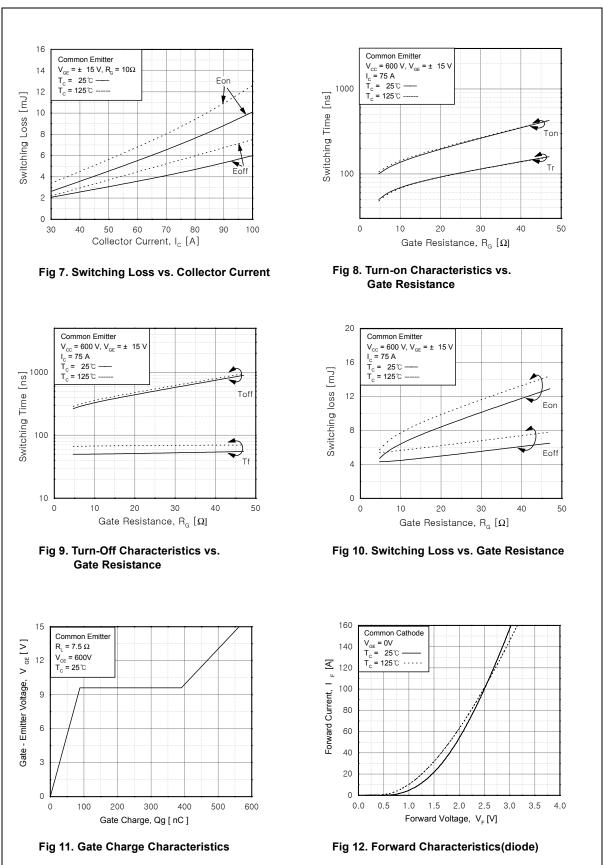
310

--

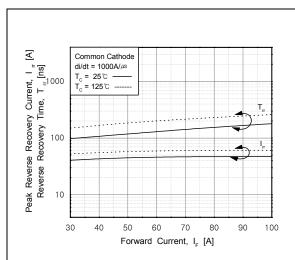
--

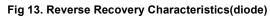

--

nC

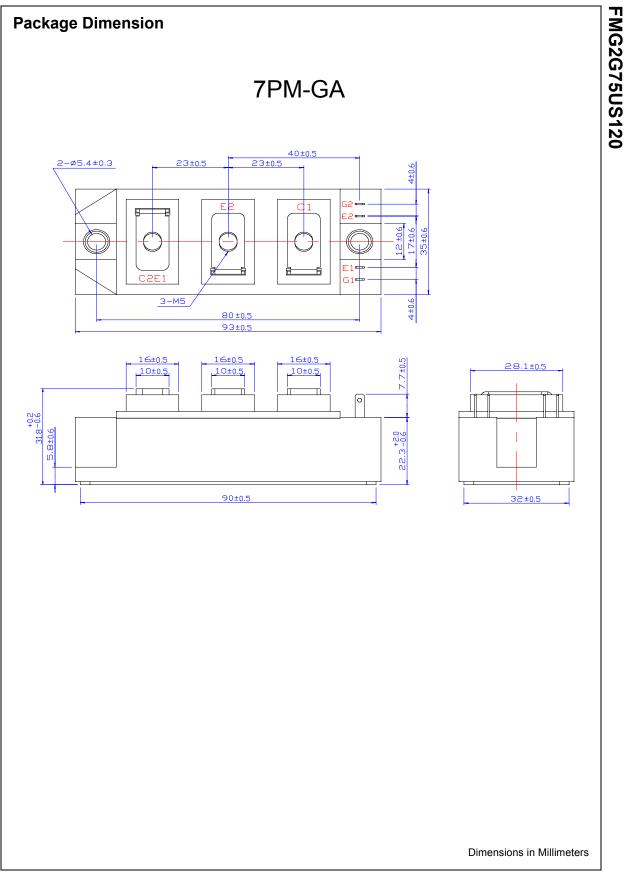

nC

nC


©2004 Fairchild Semiconductor Corporation


FMG2G75US120 Rev. A

FMG2G75US120


©2004 Fairchild Semiconductor Corporation

FMG2G75US120

Dimensions in Millimeters

©2004 Fairchild Semiconductor Corporation

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

FAST® **ISOPLANAR™** Power247™ ACEx™ SuperFET™ FASTr™ PowerSaver™ LittleFET™ SuperSOT™-3 ActiveArray™ FPS™ $\mathsf{PowerTrench}^{\mathbb{R}}$ MICROCOUPLER™ SuperSOT™-6 Bottomless™ **QFET**[®] CoolFET™ FRFET™ MicroFET™ SuperSOT™-8 QS™ GlobalOptoisolator™ MicroPak™ SyncFET™ CROSSVOLT™ TinyLogic[®] MICROWIRE™ DOME™ GTO™ QT Optoelectronics™ TINYOPTO™ HiSeC™ MSX™ **EcoSPARK™** Quiet Series™ I²C™ RapidConfigure™ TruTranslation™ MSXPro™ E²CMOS™ i-Lo™ UHC™ OCX™ RapidConnect™ EnSigna™ **UltraFET**® FACT™ ImpliedDisconnect[™] OCXPro™ µSerDes™ **OPTOLOGIC**[®] SILENT SWITCHER® VCX™ FACT Quiet Series™ **OPTOPLANAR™** SMART START™ Across the board. Around the world.™ PACMAN™ SPM™ The Power Franchise[®] POP™ Stealth™ Programmable Active Droop™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.