

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

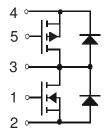
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



Preliminary Technical Information

Polar[™] P & N-Channel Power MOSFET Common Drain Topology

FMP26-02P

	P CH.	N CH.
V _{DSS}	- 200V	200V
I _{D25}	- 17A	26A
R _{DS(on)}	170mΩ	60mΩ
t _{rr(typ)}	240ns	150ns

(Electrically Isolated Tab)

Symbol	bol Test Conditions Maximum Ra			
T,		-55 +150	°C	
T _{JM}		150	°C	
T _{stg}		-55 +150	°C	
V _{ISOLD}	50/60H _Z , RMS, t = 1min, Leads-to-Tab	2500	~V	
T,	1.6mm (0.062 in.) from Case for 10s	300	°C	
T _{SOLD}	Plastic Body for 10s	260	°C	
F _c	Mounting Force	20120 / 4.527	N/lb.	

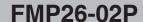
ISOPLUS i	i4-Pak™
.71	
1///	
	Isolated Tab
5	isolated Tab

Symbol	Test Conditions	Characteristic Values		
		Min.	Тур.	Max.
C _P	Coupling Capacitance Between Shorted Pins and Mounting Tab in the Case		40	pF
d_s, d_A	Pin - Pin	1.7		mm
d_s, d_A	Pin - Backside Metal	5.5		mm
Weight			9	g

Features

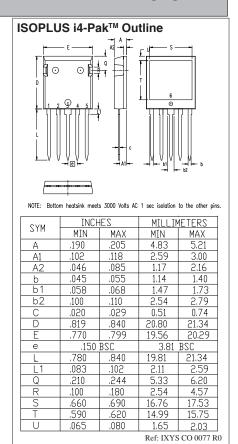
- Silicon Chip on Direct-Copper Bond (DCB) Substrate
 - UL Recognized Package
 - Isolated Mounting Surface
 - 2500V~ Electrical Isolation
- Avalanche Rated
- Low Q_G
- Low Drain-to-Tab Capacitance
- Low Package Inductance

P-CHANNEL


Symbol	Test Conditions	Maximum Ratings	
V _{DSS}	$T_J = 25^{\circ}C \text{ to } 150^{\circ}C$	- 200	V
$\mathbf{V}_{\mathtt{DGR}}$	$T_{_{\rm J}} = 25^{\circ}\text{C}$ to 150°C, $R_{_{\rm GS}} = 1\text{M}\Omega$	- 200	V
V _{GSS}	Continuous	± 20	V
\mathbf{V}_{GSM}	Transient	± 30	V
I _{D25}	T _C = 25°C	-17	Α
I _{DM}	$T_{\rm C} = 25^{\circ}$ C, Pulse Width Limited by $T_{\rm JM}$	- 70	Α
I _A	T _C = 25°C	- 26	Α
E _{AS}	$T_{c} = 25^{\circ}C$	1.5	J
P_{D}	T _C = 25°C	125	W

Advantages

- Low Gate Drive Requirement
- High Power Density
- Low Drain to Ground Capacitance
- Fast Switching


Applications

- DC and AC Motor Drives
- Class AB Audio Amplifiers
- Multi-Phase DC to DC Converters
- Industrial Battery Chargers
- Switching Power Supplies

Symbol				
$T_{\rm J} = 25^{\circ}C$ U	Inless Otherwise Specified)	Min.	Тур.	Max.
BV _{DSS}	$V_{GS} = 0V, I_{D} = -250\mu A$	- 200		V
V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = -250\mu A$	- 2.5		- 4.5 V
GSS	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{V}$			± 100 nA
I _{DSS}	$V_{DS} = V_{DSS}, V_{GS} = 0V$ $T_{J} = 125^{\circ}C$			-10 μA - 150 μA
R _{DS(on)}	$V_{GS} = -10V, I_{D} = -13A, Note 1$			170 mΩ
g_{fs}	$V_{DS} = -10V, I_{D} = -13A, Note 1$	10	17	S
C _{iss}			2740	pF
C _{oss}	$V_{GS} = 0V, V_{DS} = -25 V, f = 1 MHz$		540	pF
C _{rss}			100	pF
t _{d(on)}	Resistive Switching Times		18	ns
t _r	$V_{GS} = -10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = -13A$		33	ns
t _{d(off)}	$R_{G} = 3.3\Omega$ (External)		46	ns
t,)	Ti _G = 0.032 (External)		21	ns
$Q_{g(on)}$			56	nC
Q_{gs}	$V_{GS} = -10V$, $V_{DS} = 0.5 \cdot V_{DSS}$, $I_{D} = -13A$		18	nC
\mathbf{Q}_{gd}	-		20	nC
R _{thJC}				1.0 °C/W
R _{thCS}			0.15	°C/W

Source-Drain Diode

Symbol	Test Conditions	Characteristic Values			
$(T_J = 25^{\circ}C)$	Unless Otherwise Specified)	Min.	Тур.	Max.	
I _s	$V_{GS} = 0V$			-17	Α
I _{SM}	Repetitive, Pulse Width Limited by ${\rm T_{_{\rm JM}}}$			-104	Α
V _{SD}	$I_F = -13A$, $V_{GS} = 0V$, Note 1			- 3.2	V
t _{rr}			240		ns
$\mathbf{Q}_{_{\mathrm{RM}}}$	$V_{R} = -100V, V_{GS} = 0V$		2.2		μС
I _{RM}	J		-18		Α

N-CHANNEL

Symbol	Test Conditions	Maximum Ratings		
V _{DSS}	$T_J = 25^{\circ}C \text{ to } 150^{\circ}C$	200	V	
\mathbf{V}_{DGR}	$T_{_{ m J}}$ = 25°C to 150°C, $R_{_{ m GS}}$ = 1M Ω	200	V	
V _{GSS}	Continuous	± 20	V	
V _{GSM}	Transient	± 30	V	
I _{D25}	$T_{c} = 25^{\circ}C$	26	Α	
I _{DM}	$\rm T_{_{\rm C}}$ = 25°C, Pulse Width Limited by $\rm T_{_{\rm JM}}$	120	Α	
IA	T _C = 25°C	50	Α	
I _A E _{AS}	$T_{c} = 25^{\circ}C$	1	J	
P _D	T _c = 25°C	125	W	

Symbol				
$(T_J = 25^{\circ}C$	Unless Otherwise Specified)	Min.	Тур.	Max.
BV _{DSS}	$V_{GS} = 0V$, $I_D = 250\mu A$	200		V
V _{GS(th)}	$V_{DS} = V_{GS}$, $I_D = 250\mu A$	2.5		5.0 V
GSS	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{V}$			± 100 nA
I _{DSS}	$V_{DS} = V_{DSS}, V_{GS} = 0V$ $T_{J} = 150^{\circ}C$			25 μA 250 μA
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 25A, (Note 1)$			60 mΩ
g _{fs}	$V_{DS} = 10V, I_{D} = 25A, (Note 1)$	12	23	S
C _{iss})		2720	pF
\mathbf{C}_{oss}	$V_{GS} = 0V, V_{DS} = 25V, f = 1 MHz$		490	pF
C _{rss}	J		105	pF
t _{d(on)}	Resistive Switching Times		26	ns
t _r	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 25A$		35	ns
$\mathbf{t}_{d(off)}$	$\int R_{\rm G} = 10\Omega$ (External)		70	ns
t _f)		30	ns
$\mathbf{Q}_{g(on)}$)		70	nC
\mathbf{Q}_{gs}	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 25A$		17	nC
\mathbf{Q}_{gd}	J		37	nC
R _{thJC}				1.0 °C/W
R _{thCS}			0.15	°C/W

Source-Drain Diode

SymbolTest ConditionsCharacteristics $(T_J = 25^{\circ}C \text{ Unless Otherwise Specified})$ Min.		cteristic \ Typ.	/alues Max.			
Is		$V_{GS} = 0V$			26	Α
I _{SM}		Repetitive, Pulse Width Limited by $T_{_{\rm JM}}$			120	Α
V _{SD}		$I_{\rm F} = 50$ A, $V_{\rm GS} = 0$ V, Note 1			1.5	V
t _{rr})	$I_F = 25A$, -di/dt = 100A/ μ s		150		ns
\mathbf{Q}_{RM}	J	$V_{R} = 100V, V_{GS} = 0V$		2.0		μС

Note 1: Pulse test, $t \le 300 \mu s$, duty cycle, $d \le 2 \%$.

PRELIMINARY TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from data gathered during objective characterizations of preliminary engineering lots; but also may yet contain some information supplied during a pre-production design evaluation. IXYS reserves the right to change limits, test conditions, and dimensions without notice.