

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

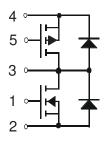
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



Advance Technical Information

Polar[™] P & N-Channel Power MOSFETs Common Drain Topology

FMP36-015P

	P CH.	N CH.
V _{DSS}	- 150V	150V
I _{D25}	- 22A	36A
R _{DS(on)}	110mΩ	40mΩ
t _{rr(typ)}	228ns	150ns

Symbol	Test Conditions	Maximum Ratings		
T,		- 55 +150	°C	
T _{JM}		150	°C	
T _{stg}		- 55 +150	°C	
T _L	1.6mm (0.062 in.) from case for 10s	300	°C	
V _{ISOL}	50/60HZ, RMS, t=1s, leads-to-tab	2500	V~	
F _c	Mounting force	20120 / 4.527	N/lb.	

.R .	
m	
1////	Isolated Tab
5	

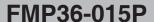
ISOPLUS i4-Pak™

Symbol Test Conditions Char			cteristic Values		
		Min.	Тур.	Max.	
C _P	Coupling capacitance between shorted pins and mounting tab in the case		40	pF	
d_s, d_A	pin - pin	1.7		mm	
d _s ,d _A d _s ,d _A	pin - backside metal	5.5		mm	
Weight			9	g	

P - CHANNEL

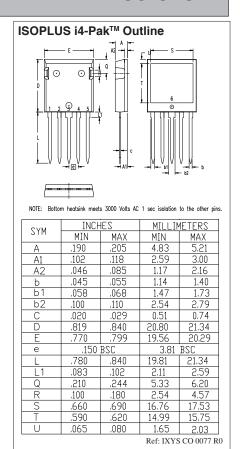
Symbol	Test Conditions	Maximum Ratings	
$\mathbf{V}_{\mathtt{DSS}}$	$T_J = 25^{\circ}C \text{ to } 150^{\circ}C$	-150	V
$\mathbf{V}_{\mathtt{DGR}}$	$T_J = 25^{\circ}C$ to 150°C, $R_{GS} = 1M\Omega$	-150	V
V _{GSS}	Continuous	± 20	V
\mathbf{V}_{GSM}	Transient	± 30	V
I _{D25}	T _C = 25°C	- 22	Α
I _{DM}	$T_{\rm C} = 25^{\circ}$ C, pulse width limited by $T_{\rm JM}$	- 90	Α
I _A	T _C = 25°C	- 36	Α
E _{AS}	$T_{c} = 25^{\circ}C$	1.5	J
P_{D}	T _C = 25°C	125	W

Features


- Silicon chip on Direct-Copper Bond (DCB) substrate
 - UL recognized package
 - Isolated mounting surface
 - 2500V electrical isolation
- Avalanche rated
- Low Q_G
- Low Drain-to-Tab capacitance
- Low package inductance

Advantages

- Low gate drive requirement
- High power density
- Low drain to ground capacitance
- Fast switching


Applications

- DC and AC motor drives
- Class AB audio amplifiers
- Multi-phase DC to DC converters
- Industrial battery chargers
- Switching power supplies

Symbol	Test Conditions ²	Characteristic Values		
$(T_J = 25^{\circ}C)$	unless otherwise specified)	Min.	Тур.	Max.
BV _{DSS}	$V_{GS} = 0V$, $I_D = -250 \mu A$	-150		V
V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = -250\mu A$	- 2.5		- 4.5 V
l _{gss}	$V_{GS} = \pm 20V, V_{DS} = 0V$			± 100 nA
DSS	$V_{DS} = V_{DSS}, V_{GS} = 0V$ $T_{J} = 125^{\circ}C$			-10 μA - 250 μA
R _{DS(on)}	$V_{GS} = -10V$, $I_D = -18A$, Note 1			110 mΩ
g _{fs}	$V_{DS} = -10V, I_{D} = -18A, Note 1$	11	19	S
C _{iss}			3100	pF
\mathbf{C}_{oss}	$V_{GS} = 0V, V_{DS} = -25 V, f = 1MHz$		610	pF
C _{rss})		100	pF
t _{d(on)}	Resistive Switching Times		21	ns
t _r	$V_{GS} = -10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = -18A$		31	ns
$\mathbf{t}_{d(off)}$	$R_{\rm G} = 3.3\Omega$ (External)		36	ns
t _f)		15	ns
$Q_{g(on)}$			55	nC
\mathbf{Q}_{gs}	$V_{GS} = -10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = -18A$		20	nC
\mathbf{Q}_{gd})		18	nC
$\mathbf{R}_{\mathrm{thJC}}$				1.0 °C/W
R _{thCS}			0.15	°C/W

Drain-Source Diode

Characteristic Values

 $(T_J = 25^{\circ}C \text{ unless otherwise specified})$

Symbol	Test Conditions ²	Min.	Тур.	Max.	
Is	$V_{GS} = 0V$			- 22	Α
I _{SM}	Repetitive, pulse width limited by $T_{_{\rm JM}}$			-140	Α
V _{SD}	$I_F = -18A, V_{GS} = 0 V, Note 1$			- 3.3	V
t _{rr}	$I_F = -18A$, di/dt = 100 A/ μ s		228		ns
$\mathbf{Q}_{_{\mathrm{RM}}}$	$V_R = -75V$, $V_{GS} = 0V$		2.0		μС
I _{RM}			-17.6		Α

N - CHANNEL

Symbol	Test Conditions	Maximum Ratings	
V _{DSS}	$T_{_{\rm J}}$ = 25°C to 150°C	150	V
$\mathbf{V}_{\mathtt{DGR}}$	$T_J = 25^{\circ}C$ to $150^{\circ}C$; $R_{GS} = 1M\Omega$	150	V
V _{GSS}	Continuous	± 20	V
V _{GSM}	Transient	± 30	V
I _{D25}	T _c = 25°C	36	Α
I _{DM}	$T_{\rm c}$ = 25°C, pulse width limited by $T_{\rm JM}$	150	Α
I	T _c = 25°C	50	Α
I _A E _{AS}	$T_{c} = 25^{\circ}C$	1.0	J
P _D	T _C = 25°C	125	W

Symbol	Test Conditions ²	Characteristic Values			
$T_{\rm J} = 25^{\circ}$ C	unless otherwise specified)	Min.	Тур.	Max.	
BV _{DSS}	$V_{GS} = 0V, I_D = 250 \mu A$	150			V
V _{GS(th)}	$V_{DS} = V_{GS}, I_D = 250\mu A$	3.0		5.5	V
GSS	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{V}$			± 100	nA
I _{DSS}	$V_{DS} = V_{DSS}, V_{GS} = 0V$ $T_{J} = 150^{\circ}C$			25 250	μ Α μ Α
$\mathbf{R}_{\mathrm{DS(on)}}$	$V_{GS} = 10V, I_{D} = 31A, (Note 1)$		33	40	$m\Omega$
g _{fs}	$V_{DS} = 10V, I_{D} = 31A, (Note 1)$	14	24		S
C _{iss}			2250		pF
C _{oss}	$V_{GS} = 0V, V_{DS} = 25 V, f = 1 MHz$		660		pF
C _{rss})		185		pF
$\mathbf{t}_{d(on)}$	Resistive Switching Times		27		ns
t,	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 31A$		38		ns
$\mathbf{t}_{d(off)}$	$R_{\rm G} = 10\Omega$ (External)		76		ns
t _f)		35		ns
$\mathbf{Q}_{g(on)}$			70		nC
\mathbf{Q}_{gs}	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 31A$		20		nC
\mathbf{Q}_{gd}	J		38		nC
R _{thJC}				1.0 °	C/W
R _{thCS}			0.15	0	C/W

Source-Drain Diode

Characteristic Values

T₁ = 25°C unless otherwise specified)

Symbol	Test Conditions ³	Min.	Тур.	Max.	
Is	$V_{GS} = 0V$			36	Α
I _{SM}	Repetitive, pulse width limited by $T_{_{JM}}$			150	Α
V _{SD}	$I_F = 62A$, $V_{GS} = 0V$, Note 1			1.5	V
t _{rr}	$I_F = 25A, -di/dt = 100A/\mu s$		150		ns
$\mathbf{Q}_{_{\mathrm{RM}}}$	$V_{R} = 100V, V_{GS} = 0V$		2.0		μС

Note 1: Pulse test, $t \le 300 \mu s$, duty cycle, $d \le 2 \%$.

ADVANCE TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated objective result. IXYS reserves the right