

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

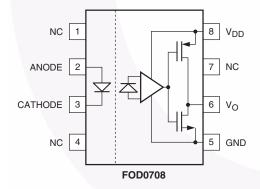
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

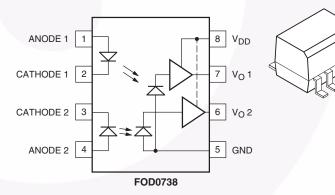
April 2009

FOD0708 Single Channel CMOS Optocoupler, FOD0738 Dual Channel CMOS Optocoupler

Features

- +5V CMOS compatibility
- 15ns typical pulse width distortion
- 30ns max. pulse width distortion
- 40ns max. propagation delay skew
- High speed: 15 MBd
- 60ns max. propagation delay
- 10kV/µs minimum common mode rejection
- -40°C to 100°C temperature range
- UL approved (file #E90700)


Applications


- Line receivers
- Pulse transformer replacement
- Output interface to CMOS-LSTTL-TTL
- Wide bandwidth analog coupling

General Description

The FOD0708 and FOD0738 optocouplers consist of an AlGaAs LED optically coupled to a high speed transimpedance amplifier and voltage comparator. These optocouplers utilize the latest CMOS IC technology to achieve outstanding performance with very low power consumption. The devices are housed in a compact 8-pin SOIC package for optimum mounting density.

Schematics

TRUTH TABLE

LED	V _O OUTPUT
OFF	Н
ON	L

Note: A $0.1\mu F$ bypass capacitor must be connected between pins 5 and 8.

Absolute Maximum Ratings ($T_A = 25^{\circ}C$ unless otherwise specified) Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter		Min.	Max.	Units	
T _S	Storage Temperature		-40	+125	°C	
T _A	Ambient Operating Temperature		-40 +100		°C	
V _{DD}	Supply Voltages		0	6	Volts	
Vo	Output Voltage		-0.5	V _{DD} + 0.5	Volts	
Io	Average Output Current			2	mA	
I _F	Average Forward Input Current			20	mA	
	Lead Solder Temperature	26	260°C for 10 sec., 1.6 mm below seating plane			
	Solder Reflow Temperature Profile	Se	See Solder Reflow Temperature Profile Section			
LED Power Dissipation Single Channel Dual Channel 40mW (derate 40mW per channel (te above 95°C, 1.4 I (derate above 90	,			
	Detector Power Dissipation Single Channel Dual Channel	85mW (derate above 75°C, 1.8mW/°C) 65mW per channel (derate above 90°C, 2.0mW/°C)				

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Min.	Max.	Units
T _A	Ambient Operating Temperature	-40	+100	°C
V_{DD}	Supply Voltages	4.5	5.5	Volts
I _F	Input Current (ON)	10	16	mA

Electrical Characteristics ($T_A = -40^{\circ}\text{C to } + 100^{\circ}\text{C}$) and $4.5 \text{ V} \le V_{DD} \le 5.5 \text{ V}$

Symbol	Parameter		Test Conditions	Min.	Тур.*	Max.	Units	Fig.
V _F	Input Forward Voltage		I _F = 12mA	1.3	1.45	1.8	V	9
BV _R	Input Reverse Breakdown Voltage		I _R = 10μA	5			V	
V _{OH}	Logic High Output Voltage		$I_F = 0$, $I_O = -20\mu A$	4.0	5.0		V	
V _{OL}	Logic Low Output Voltage		I _F = 12mA, I _O = 20μA		0.01	0.1	V	
I _{TH}	Input Threshold Current	(FOD0708) (FOD0738)	I _{OL} = 20μA		4.0 4.4	8.2 8.2	mA	1,5
I _{DDL}	Logic Low Output Supply Current	(FOD0708) (FOD0738)	I _F = 12mA		3.4 6.9	14.0 18.0	mA	3,7
I _{DDH}	Logic High Output Supply Current	(FOD0708) (FOD0738)	I _F = 0		3.7 7.5	11.0 15.0	mA	4,8

^{*}All typicals at $T_A = 25^{\circ}C$ and $V_{DD} = 5V$ unless otherwise noted.

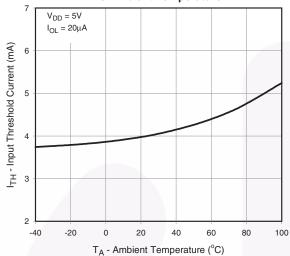
Switching Characteristics Over recommended temperature ($T_A = -40^{\circ}\text{C}$ to +100°C) and $4.5 \text{ V} \le V_{DD} \le 5.5 \text{ V}$. All typical specifications are at $T_A = 25^{\circ}\text{C}$, $V_{DD} = +5 \text{ V}$.

Symbol	Parameter	Test Condit	Test Conditions		Тур.*	Max.	Units
t _{PHL}	Propagation Delay Time to Logic Low Output	I _F = 12mA, C _L = 15pF CMOS Signal Levels (Note 1) (Fig. 10)		20		60	ns
t _{PLH}	Propagation Delay Time to	$I_F = 12mA, C_L = 15pF$	FOD0708	13		60	ns
	Logic High Output	CMOS Signal Levels, (Note 1) (Fig. 10)	FOD0738	11		60	
PW	Pulse Width			100			ns
I PWD I	Pulse Width Distortion	I _F = 12mA, C _L = 15pF, CMOS Signal Levels (Note 2)		0		30	ns
t _{PSK}	Propagation Delay Skew	I _F = 12mA, C _L = 15pF, CMOS Signal Levels (Note 3)				40	ns
t _R	Output Rise Time (10%–90%)	I _F = 12mA, C _L = 15pF, CMOS Signal Levels			12		ns
t _F	Output Fall Time (90%–10%)	I _F = 12mA, C _L = 15pF, CMOS Signal Levels			8		ns
I CM _H I	Common Mode Transient Immunity at Logic High Output	$V_{CM} = 1000V, T_A = 25$ °C, $I_F = 0$ mA, (Note 4) (Fig. 11)		25	50		kV/µs
I CM _L I	Common Mode Transient Immunity at Logic Low Output	$V_{CM} = 1000V, T_A = 25^{\circ}C, I_F = 12mA,$ (Note 5) (Fig. 11)		25	50		kV/μs

^{*}All typicals at $T_A = 25$ °C and $V_{DD} = 5V$ unless otherwise noted.

Isolation Characteristics (T_A = -40°C to +100°C Unless otherwise specified.)

Characteristics	Test Conditions	Symbol	Min	Тур.*	Max	Unit
Input-Output Insulation Leakage Current	Relative humidity = 45%, $T_A = 25$ °C, $t = 5s$, $V_{I-O} = 3000$ VDC (Note 6)	I _{I-O}			1.0	μА
Withstand Insulation Test Voltage	$I_{I-O} \le 10 \mu A, R_H < 50\%,$ $T_A = 25^{\circ}C, t = 1 min. (Note 6)$	V _{ISO}	2500			V _{RMS}
Resistance (Input to Output)	V _{I-O} = 500V (Note 6)	R _{I-O}		10 ¹²		Ω
Capacitance (Input to Output)	f = 1MHz (Note 6)	C _{I-O}		0.6		pF


^{*}All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

Notes:

- Propagation delay time, high to low (t_{PHL}), is measured from the 50% level on the rising edge of the input pulse to the 2.5V level of the falling edge of the output voltage signal. Propagation delay time, low to high (t_{PLH}), is measured from the 50% level on the falling edge of the input pulse to the 2.5V level of the rising edge of the output voltage signal.
- 2. Pulse width distoration is defined as the absolute difference between the high to low and low to high propagation delay times, | t_{PHL} t_{PLH} |.
- Propagation delay skew, t_{PSK}, is defined as the worst case difference in t_{PHL} or t_{PLH} between units within the recommended operating range of the device.
- CM_H The maximum tolerated rate of rise of the common mode voltage to ensure the output will remain in the high state, (i,e., V_{OUT} > 2.0V) Measured in kilovolts per microsecond (kV/µs).
- CM_L The maximum tolerated rate of fall of the common mode voltage to ensure the output will remain in the low state, (i,e., V_{OUT} < 0.8V). Measured in kilovolts per microsecond (kV/μs).
- Isolation voltage, V_{ISO}, is an internal device dielectric breakdown rating. For this test, pins 1,2,3,4 are common, and pins 5,6,7,8 are common.

Typical Performance Curves

Figure 1. FOD0708
Typical Input Threshold Current
vs Ambient Temperature

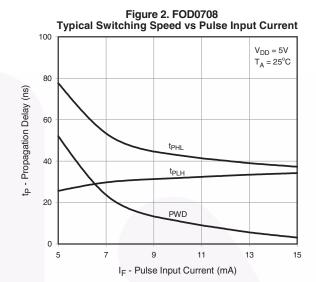
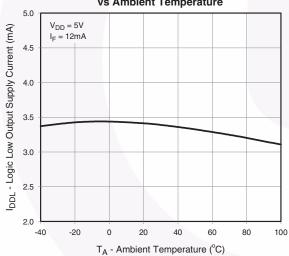
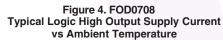
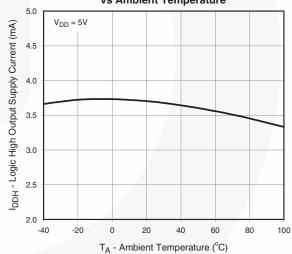





Figure 3. FOD0708
Typical Logic Low Output Supply Current
vs Ambient Temperature

Typical Performance Curves (Continued)

Figure 5. FOD0738
Typical Input Threshold Current
vs Ambient Temperature

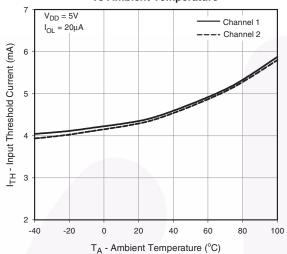


Figure 7. FOD0738

Typical Logic Low Output Supply Current vs Ambient Temperature

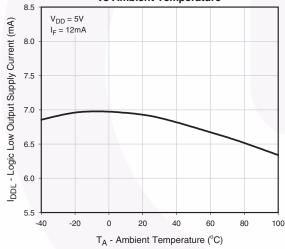
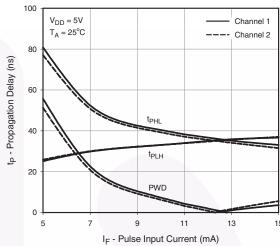
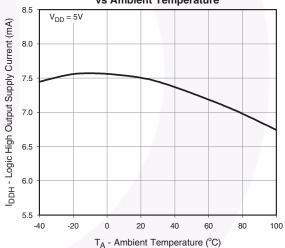
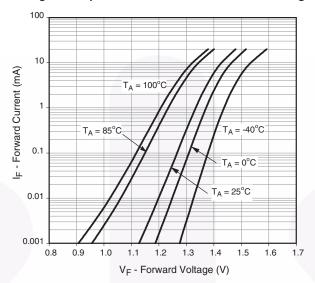


Figure 6. FOD0738

Typical Switching Speed vs Pulse Input Current


Figure 8. FOD0738

Typical Logic High Output Supply Current vs Ambient Temperature

Typical Performance Curves (Continued)

Figure 9. Input Forward Current vs. Forward Voltage

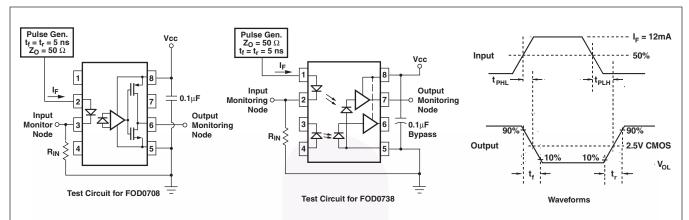


Fig. 10 Test Circuit and Waveforms for t_{PLH} , t_{PHL} , t_{r} and t_{f} .

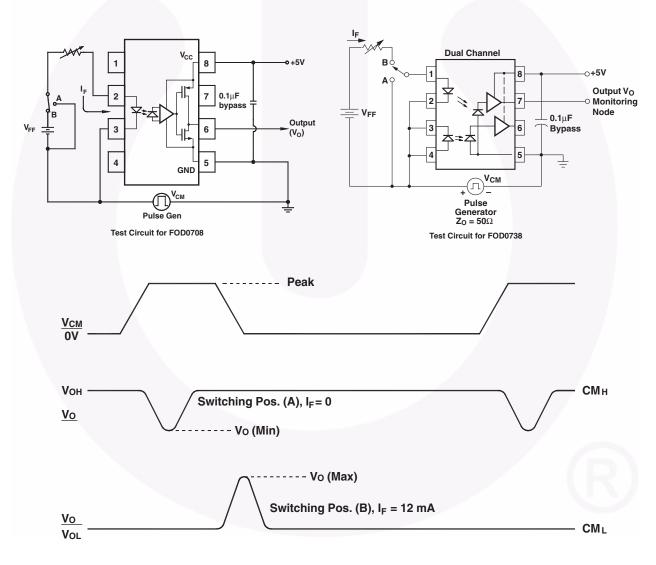
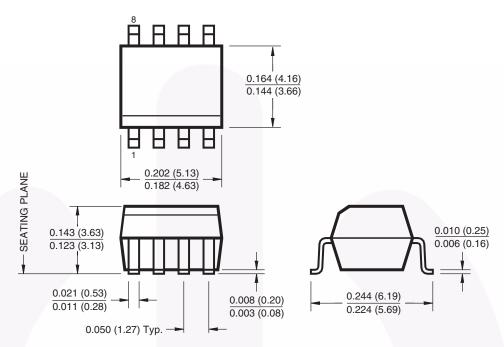
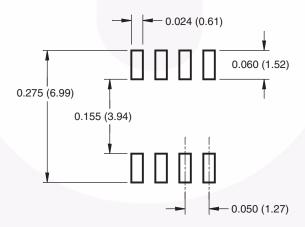



Fig. 11 Test Circuit Common Mode Transient Immunity (FOD0708 and FOD0738)

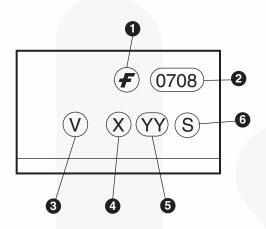

Package Dimensions

8-pin SOIC Surface Mount

Lead Coplanarity: 0.004 (0.10) MAX

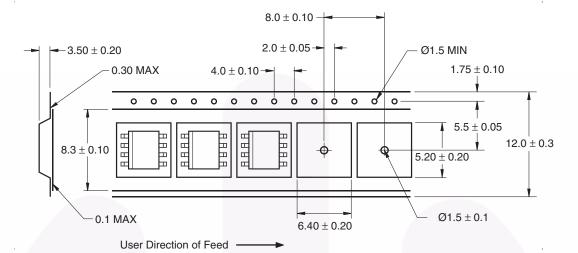
Recommended Pad Layout

Dimensions in inches (mm).

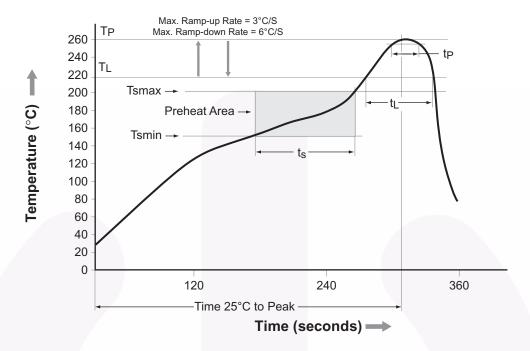

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/

Ordering Information


Option Order Entry Identifier		Description
No Suffix	FOD0708	Shipped in tubes (50 units per tube)
R2 FOD0708R2		Tape and Reel (2500 units per reel)

Marking Information


Definiti	ons			
1	Fairchild logo			
2	Device number			
3	VDE mark (Note: Only appears on parts ordered with VDE option – See order entry table)			
4	One digit year code, e.g., '5'			
5	Two digit work week ranging from '01' to '53'			
6	Assembly package code			

Carrier Tape Specification

Dimensions in mm

Reflow Profile

Profile Freature	Pb-Free Assembly Profile		
Temperature Min. (Tsmin)	150°C		
Temperature Max. (Tsmax)	200°C		
Time (t _S) from (Tsmin to Tsmax)	60-120 seconds		
Ramp-up Rate (t _L to t _P)	3°C/second max.		
Liquidous Temperature (T _L)	217°C		
Time (t _L) Maintained Above (T _L)	60-150 seconds		
Peak Body Package Temperature	260°C +0°C / -5°C		
Time (t _P) within 5°C of 260°C	30 seconds		
Ramp-down Rate (T _P to T _L)	6°C/second max.		
Time 25°C to Peak Temperature	8 minutes max.		

The Power Franchise®

bwer franchise

TinyBoost™

TinyBuck™

TinyLogic[®]

TINYOPTO™

TinyPower™

TinyPWM™

TinyWire™

SerDes™

TriFault Detect™

TRUECURRENT™*

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

Auto-SPMTM F-PFSTM
Build it NowTM FRFET[®]

 CorePLUS™
 Global Power Resource SM

 CorePOWER™
 Green FPS™

 CROSSVOLT™
 Green FPS™ e-Series™

 $\begin{array}{lll} \textit{CROSSVOLT}^{\text{\tiny{TM}}} & \textit{Green FPS}^{\text{\tiny{TM}}} \; \textit{e-Serie} \\ \textit{CTL}^{\text{\tiny{TM}}} & \textit{Gmax}^{\text{\tiny{TM}}} \\ \textit{Current Transfer Logic}^{\text{\tiny{TM}}} & \textit{GTO}^{\text{\tiny{TM}}} \\ \textit{EcoSPARK}^{\oplus} & \textit{IntelliMAX}^{\text{\tiny{TM}}} \\ \textit{EfficentMax}^{\text{\tiny{TM}}} & \textit{ISOPLANAR}^{\text{\tiny{TM}}} \\ \textit{EZSWITCH}^{\text{\tiny{TM}}*} & \textit{MegaBuck}^{\text{\tiny{TM}}} \end{array}$

MICROCOUPLER™
MicroFET™
MicroPak™
MillerDrive™
Fairchild® MotionMax™
Fairchild Semiconductor® Motion-SPM™
FACT Quiet Series™ OPTOLOGIC®
FACT® OPTOPLANAR®

FACT® OPTOPLAN/
FAST® ®
FastvCore™
FETBench™ PDP SPM™

FETBench

FlashWriter

PDP SPM

Power-SPM

FPS

FPS

Power-SPM

PowerTrench[®] PowerXS™

Programmable Active Droop™

QFET[®]
QS™
Quiet Series™
RapidConfigure™

Saving our world, 1mW/W/kW at a time™

SmartMax™
SMART START™
SPM®
STEALTH™
SuperFET™
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SupreMOS™
SyncFET™
Sync-Lock™

SYSTEM ®*

SerDes*
UHC*
Ultra FRFET™
UniFET™
VCX™
VisualMax™
XS™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are
 intended for surgical implant into the body or (b) support or sustain life,
 and (c) whose failure to perform when properly used in accordance
 with instructions for use provided in the labeling, can be reasonably
 expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Jenniuon of Terms					
Datasheet Identification Product Status		Definition			
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.			
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.			
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.			
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.			

Rev. I40

^{*} Trademarks of System General Corporation, used under license by Fairchild Semiconductor.