: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

FOD2200

Low Input Current Logic Gate Optocouplers

Features

■ $1 \mathrm{kV} / \mu \mathrm{s}$ minimum common mode rejection
■ Compatible with LSTTL, TTL, and CMOS logic
■ Wide V_{CC} range (4.5 V to 20 V)
■ 2.5 Mbd guaranteed over temperature
■ Low input current (1.6mA)
■ Three state output (no pullup resistor required)

- Guaranteed performance from $0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
- Hysteresis
- Safety and regulatory approved
- UL1577, $5000 \mathrm{~V}_{\mathrm{RMS}}$ for 1 min .
- IEC60747-5-2

■ $>8.0 \mathrm{~mm}$ clearance and creepage distance (option 'T' or 'TS')
■ 1,414V Peak Working Insulation Voltage ($\mathrm{V}_{\text {IORM }}$)

Applications

■ Isolation of high speed logic systems
■ Computer peripheral interfaces
■ Microprocessor system interfaces

- Ground loop elimination

■ Pulse transformer replacement
■ Isolated bus driver
■ High speed line receiver

Description

The FOD2200 is an optically coupled logic gate that combine an AIGaAs LED and an integrated high gain photo detector. The detector has a three state output stage and has a detector threshold with hysteresis. The three state output eliminates the need for a pullup resistor and allows for direct drive of data busses. The hysteresis provides differential mode noise immunity and eliminates the potential for output signal chatter.

The Electrical and Switching Characteristics of the FOD2200 are guaranteed over the temperature range of $0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ and a V_{CC} range of 4.5 V to 20 V . Low I_{F} and wide V_{CC} range allow compatibility with TTL, LSTTL, and CMOS logic and result in lower power consumption compared to other high speed opto-couplers. Logic signals are transmitted with a maximum propagation delay of 300 ns . The FOD2200 is useful for isolating high speed logic interfaces, buffering of input and output lines, and implementing isolated line receivers in high noise environments.

Truth Table (Positive Logic)

LED	Enable	Output
On	H	Z
Off	H	Z
On	L	H
Off	L	L

Package Outlines

Safety and Insulation Ratings

As per IEC 60747-5-2. This optocoupler is suitable for "safe electrical insulation" only within the safety limit data. Compliance with the safety ratings shall be ensured by means of protective circuits.

Symbol	Parameter	Min.	Typ.	Max.	Unit
	Installation Classifications per DIN VDE 0110/1.89 Table 1 For Rated Mains Voltage < 150Vrms		I-IV		
	For Rated Mains Voltage < 300Vrms		I-IV		
	For Rated Mains Voltage < 450Vrms		I-III		
	For Rated Mains Voltage < 600Vrms		I-III		
	For Rated Mains Voltage < 1000Vrms (Option T, TS)		I-III		
	Climatic Classification		40/85/21		
	Pollution Degree (DIN VDE 0110/1.89)		2		
CTI	Comparative Tracking Index	175			
V_{PR}	Input to Output Test Voltage, Method b, $\mathrm{V}_{\text {IORM }} \times 1.875=\mathrm{V}_{\mathrm{PR}}, 100 \%$ Production Test with $\mathrm{tm}=1$ sec., Partial Discharge $<5 \mathrm{pC}$	2651			
	Input to Output Test Voltage, Method a, $\mathrm{V}_{\text {IORM }} \times 1.5=\mathrm{V}_{\mathrm{PR}}$, Type and Sample Test with $\mathrm{tm}=60 \mathrm{sec}$.,Partial Discharge $<5 \mathrm{pC}$	2121			
$\mathrm{V}_{\text {IORM }}$	Max Working Insulation Voltage	1,414			$V_{\text {peak }}$
$\mathrm{V}_{\text {IOTM }}$	Highest Allowable Over Voltage	6000			$V_{\text {peak }}$
	External Creepage	8			mm
	External Clearance	7.4			mm
	External Clearance (for Option T or TS - 0.4" Lead Spacing)	10.16			mm
	Insulation Thickness	0.5			mm
$\mathrm{T}_{\text {Case }}$	Safety Limit Values - Maximum Values Allowed in the Event of a Failure Case Temperature	150			${ }^{\circ} \mathrm{C}$
$\mathrm{I}_{\text {S,INPUT }}$	Input Current	10			mA
$\mathrm{P}_{\text {S,OUTPUT }}$	Output Power (Duty Factor $\leq 2.7 \%$)	150			mW
R_{IO}	Insulation Resistance at $\mathrm{T}_{\mathrm{S}}, \mathrm{V}_{1 \mathrm{O}}=500 \mathrm{~V}$	10^{9}			Ω

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified)
Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Value	Units
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-40 to +125	${ }^{\circ} \mathrm{C}$
TopR	Operating Temperature	-40 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {SOL }}$	Lead Solder Temperature (1.6mm below seating plane)	260 for 10 sec	${ }^{\circ} \mathrm{C}$
EMITTER			
$\mathrm{I}_{\mathrm{F} \text { (PK) }}$	Peak Transient Input Current ($\leq 1 \mu$ s PW, 300pps)	1.0	A
I_{F}	Average Forward Input Current	10	mA
V_{R}	Reverse Input Voltage	5.0	V
P_{D}	Output Power Dissipation (No derating required up to $85^{\circ} \mathrm{C}$)	45	mW
DETECTOR			
V_{CC}	Supply Voltage	0 to 20	V
Io	Average Output Current	25	mA
V_{E}	Three State Enable Voltage	-0.5 to 20	V
V_{O}	Output Voltage	-0.5 to 20	V
$P_{\text {D }}$	Output Power Dissipation (No derating required up to $85{ }^{\circ} \mathrm{C}$)	150	mW

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Min.	Max.	Units
$\mathrm{I}_{\mathrm{F}(\mathrm{ON})}$	Forward Input Current	1.6^{\star}	5	mA
$\mathrm{I}_{\mathrm{F}(\mathrm{OFF})}$	Forward Input Current		0.1	mA
$\mathrm{~V}_{\mathrm{CC}}$	Supply Voltage, Output	4.5	20	V
$\mathrm{~V}_{\mathrm{EL}}$	Enable Voltage, LOW Level	0	0.8	V
$\mathrm{~V}_{\mathrm{EH}}$	Enable Voltage, HIGH Level	2.0	20	V
$\mathrm{~T}_{\mathrm{A}}$	Operating Temperature	0	+85	${ }^{\circ} \mathrm{C}$
N	Fan Out (TTL Load)		4	

*The initial switching threshold is 1.6 mA or less. It is recommended that 2.2 mA be used to permit at least a 20% CTR degradation guardband.

Electrical Characteristics ($\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to $20 \mathrm{~V}, \mathrm{I}_{\mathrm{F}(\mathrm{ON})}=1.6 \mathrm{~mA}$ to 5 mA ,
$\mathrm{V}_{\mathrm{EH}}=2 \mathrm{~V}$ to $20 \mathrm{~V}, \mathrm{~V}_{\mathrm{EL}}=0 \mathrm{~V}$ to $0.8 \mathrm{~V}, \mathrm{I}_{\text {(OFF) }}=0 \mathrm{~mA}$ to 0.1 mA unless otherwise specified. $)^{(1)}$
Individual Component Characteristics

Symbol	Parameter	Test Conditions		Min.	Typ.*	Max.	Unit
EMITTER							
V_{F}	Input Forward Voltage	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$				1.75	V
			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.40	1.7	
B_{VR}	Input Reverse Breakdown Voltage	$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}$		5.0			V
$\mathrm{C}_{\text {IN }}$	Input Capacitance	Pins 2 \& $3, \mathrm{~V}_{\mathrm{F}}=0, \mathrm{f}=$	MHz		60		pF
$\Delta \mathrm{VF} / \Delta \mathrm{TA}$	Input Diode Temperature Coefficient	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$			-1.4		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
DETECTOR							
$\mathrm{I}_{\mathrm{CCH}}$	High Level Supply Current	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=\text { Open, } \\ & \mathrm{V}_{\mathrm{E}}=\text { Don't Care } \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$		3.5	4.5	mA
			$\mathrm{V}_{\mathrm{CC}}=20 \mathrm{~V}$		4.0	6.0	
$\mathrm{I}_{\mathrm{CCL}}$	Low Level Supply Current	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0, \mathrm{I}_{\mathrm{O}}=\text { Open, } \\ & \mathrm{V}_{\mathrm{E}}=\text { Don't care } \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$		4.4	6.0	mA
			$\mathrm{V}_{\mathrm{CC}}=20 \mathrm{~V}$		5.2	7.5	
I_{EL}	Low Level Enable Current	$\mathrm{V}_{\mathrm{E}}=0.4 \mathrm{~V}$			-0.1	-0.32	mA
I_{EH}	High Level Enable Current					20	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{E}}=5.5 \mathrm{~V}$				100	
		$\mathrm{V}_{\mathrm{E}}=20 \mathrm{~V}$			0.005	250	
V_{EH}	High Level Enable Voltage			2.0			V
V_{EL}	Low Level Enable Voltage					0.8	V

Switching Characteristics $\left(\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}(\mathrm{ON})}=1.6 \mathrm{~mA}$ to $5 \mathrm{~mA}, \mathrm{I}_{\mathrm{F}(\mathrm{OFF})}=0$ to $0.1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 20 V unless otherwise specified.)

Symbol	AC Characteristics	Test Conditions		Min.	Typ.*	Max.	Unit
$\mathrm{T}_{\text {PLH }}$	Propagation Delay Time to Output High Level	With Peaking Capacitor ${ }^{(2)(4)}$ (Fig. 1)			120	300	ns
$\mathrm{T}_{\text {PHL }}$	Propagation Delay Time to Output Low Level	With Peaking Capacitor ${ }^{(3)(4)}$ (Fig. 1)			180	300	ns
t_{r}	Output Rise Time (10\% to 90\%)	${ }^{(5)}$ (Fig. 1)			80		ns
t_{f}	Output Fall Time (90\% to 10\%)	${ }^{(6)}$ (Fig. 1)			25		ns
$\mathrm{t}_{\text {PZH }}$	Enable Propagation Delay Time to Output High Level	(Fig. 2)			40		ns
$\mathrm{t}_{\text {PZL }}$	Enable Propagation Delay Time to Output Low Level	(Fig. 2)			50		ns
$\mathrm{T}_{\text {PHZ }}$	Disable Propagation Delay Time from Output High Level	(Fig. 2)			95		ns
$\mathrm{T}_{\mathrm{PLZ}}$	Disable Propagation Delay Time from Output Low Level	(Fig. 2)			80		ns
$\mathrm{ICM}_{\mathrm{H}}{ }^{\text {l }}$	Common Mode Transient Immunity (at Output High Level)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{~V}_{\mathrm{OH}}(\text { Min. })=2.0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}^{(7)}(\text { Fig } .3) \end{aligned}$	$\begin{aligned} & \left.\begin{array}{l} \mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}, \\ \mathrm{IV}_{\mathrm{CM}} \mid=50 \mathrm{~V} \\ \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \\ \left\|\mathrm{~V}_{\mathrm{CM}}\right\|=1,000 \mathrm{~V} \\ \hline \end{array}{ }^{2} \right\rvert\, \end{aligned}$	1,000			V/ $/ \mathrm{s}$
$\mathrm{ICM}_{\mathrm{L}} \mathrm{I}$	Common Mode Transient Immunity (at Output Low Level)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{OL}}(\mathrm{Max} .)=0.8 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V}^{(8)} \text { (} \text { (ig. 3) } \end{aligned}$	$\left\|\mathrm{V}_{\mathrm{CM}}\right\|=50 \mathrm{~V}$ $\mathrm{~V}_{\mathrm{CM}} \mid=1,000 \mathrm{~V}$	1,000			V/ $/ \mathrm{s}$

*Typical values at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}(\mathrm{ON})}=3 \mathrm{~mA}$ unless otherwise specified.

Electrical Characteristics (Continued)
Transfer Characteristics ($\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 20 V , $\mathrm{I}_{\mathrm{F}(\mathrm{ON})}=1.6 \mathrm{~mA}$ to $5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{EH}}=2 \mathrm{~V}$ to 20 V , $\mathrm{V}_{\mathrm{EL}}=0 \mathrm{~V}$ to $0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{F}(\mathrm{OFF})}=0 \mathrm{~mA}$ to 0.1 mA unless otherwise specified. ${ }^{(1)}$

Symbol	DC Characteristics	Test Conditions		Min.	Typ.*	Max.	Unit
$\mathrm{I}_{\mathrm{OHH}}$	Output Leakage Current$\left(\mathrm{V}_{\mathrm{OUT}}>\mathrm{V}_{\mathrm{CC}}\right)$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$		2.0	100	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{O}}=20 \mathrm{~V}$		2.5	500	
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{E}}=0.4 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OL}}=6.4 \mathrm{~mA}^{(2)} \end{aligned}$			0.33	0.5	V
I_{FT}	Input Threshold Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=0.4 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OL}}=6.4 \mathrm{~mA} \end{aligned}$				1.6	mA
V_{OH}	Logic High Output Voltage	$\mathrm{IOH}=-2.6 \mathrm{~mA}$		2.4	$\mathrm{V}_{\mathrm{CC}}-1.8$		V
$\mathrm{l}_{\text {OzL }}$	High Impedance State Output Current	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$				-20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {OZH }}$	High Impedance State Output Current	$\mathrm{V}_{\mathrm{O}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$				20	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$				100	
		$\mathrm{V}_{\mathrm{O}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$				500	
$\mathrm{I}_{\text {OSL }}$	Logic Low Short Circuit Output Current ${ }^{(10)}$	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}$		25			mA
		$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}$		40			
$\mathrm{I}_{\text {OSH }}$	Logic High Short Circuit Output Current ${ }^{(10)}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=$ GND		-10			mA
		$\mathrm{V}_{\mathrm{CC}}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=\mathrm{GND}$		-25			
$\mathrm{I}_{\mathrm{HYS}}$	Input Current Hysteresis	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$			0.03		mA

Isolation Characteristics ($\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified)

Symbol	Characteristics	Test Conditions	Min.	Typ.*	Max.	Unit
$\mathrm{V}_{\mathrm{ISO}}$	Withstand Insulation Test Voltage	$\mathrm{R}_{\mathrm{H}}<50 \%, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{t}=1 \mathrm{~min} .^{(9)}$	5000			$\mathrm{~V}_{\mathrm{RMS}}$
$\mathrm{R}_{\mathrm{I}-\mathrm{O}}$	Resistance (Input to Output)	$\mathrm{V}_{\mathrm{I}-\mathrm{O}}=500 \mathrm{VDC}^{(9)}$		10^{12}		Ω
$\mathrm{C}_{\mathrm{I}-\mathrm{O}}$	Capacitance (Input to Output)	$\mathrm{V}_{\mathrm{I}-\mathrm{O}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}^{(9)}$		0.6		pF

*Typical values at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}(\mathrm{ON})}=3 \mathrm{~mA}$ unless otherwise stated.

Notes:

1. The V_{CC} supply to each optoisolator must be bypassed by a $0.1 \mu \mathrm{~F}$ capacitor or larger. This can be either a ceramic or solid tantalum capacitor with good high frequency characteristic and should be connected as close as possible to the package V_{Cc} and GND pins of each device.
2. $t_{\text {PLH }}$ - Propagation delay is measured from the 50% level on the LOW to HIGH transition of the input current pulse to the 1.3 V level on the LOW to HIGH transition of the output voltage pulse.
3. $\mathrm{t}_{\mathrm{PHL}}$ - Propagation delay is measured from the 50% level on the HIGH to LOW transition of the input current pulse to the 1.3 V level on the HIGH to LOW transition of the output voltage pulse.
4. When the peaking capacitor is omitted, propagation delay times may increase by 100 ns .
5. t_{r} - Rise time is measured from the 10% to the 90% levels on the LOW to HIGH transition of the output pulse.
6. $t_{f}-$ Fall time is measured from the 90% to the 10% levels on the HIGH to LOW transition of the output pulse.
7. CM_{H} - The maximum tolerable rate of fall of the common mode voltage to ensure the output will remain in the high state (i.e., $\mathrm{V}_{\text {OUT }}>2.0 \mathrm{~V}$).
8. $\mathrm{CM} \mathrm{M}_{\mathrm{L}}$ - The maximum tolerable rate of rise of the common mode voltage to ensure the output will remain in the low state (i.e., $\mathrm{V}_{\text {OUT }}<0.8 \mathrm{~V}$).
9. Device considered a two-terminal device: Pins 1, 2, 3 and 4 shorted together, and Pins 5, 6, 7 and 8 shorted together.
10. Duration of output short circuit time should not exceed 10 ms .

Test Circuits

Fig. 2. Test Circuit and Waveforms for $\mathrm{t}_{\text {PHZ }}$, $\mathrm{t}_{\text {PZH, }}$ t $\mathrm{t}_{\text {LZ }}$, and $\mathrm{t}_{\text {PZL }}$

Test Circuits (Continued)

Fig. 3. Test Circuit and Typical Waveforms for Common Mode Transient Immunity

Figure 4. Recommended LSTTL to LSTTL Circuit

Figure 6. Recommended LED Drive Circuit

Figure 5. LSTTL to CMOS Interface Circuit

Figure 7. Series LED Drive with Open Collector Gate ($4.7 \mathrm{k} \Omega$ Resistor Shunts IOH from the LED)
*The 120 pF capacitor may be omitted in applications where 500 ns propagation delay is sufficient.

Typical Performance Curves

Figure 10. Input Threshold Current vs. Ambient Temperature

Figure 14. Propagation Delay vs Ambient Temperature

Figure 9. Output Voltage vs. Input Forward Current

Figure 11. Logic Low Output Voltage vs. Ambient Temperature

Figure 13. Logic High Output Current vs. Ambient Temperature

Figure 15. Rise, Fall Time vs Ambient Temperature

Package Dimensions

Through Hole

Surface Mount - 0.3" Lead Spacing (Option S)

Note:
All dimensions are in inches (millimeters)
0.4" Lead Spacing (Option T)

8-Pin Surface Mount DIP - Land Pattern (Option S)

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision andlor date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/

Package Dimensions (Continued)

Surface Mount - 0.4" Lead Spacing (Option TS)

8-Pin Surface Mount DIP - Land Pattern

 (Option TS)

Note:

All dimensions are in inches (millimeters)
Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/

Ordering Information

Part Number	Package	Packing Method
FOD2200	DIP 8-Pin	Tube (50 units per tube)
FOD2200S	SMT 8-Pin (Lead Bend)	Tube (50 units per tube)
FOD2200SD	SMT 8-Pin (Lead Bend)	Tape and Reel (1,000 units per reel)
FOD2200V	DIP 8-Pin, IEC60747-5-2 option	Tube (50 units per tube)
FOD2200SV	SMT 8-Pin (Lead Bend), IEC60747-5-2 option	Tube (50 units per tube)
FOD2200SDV	SMT 8-Pin (Lead Bend), IEC60747-5-2 option	Tape and Reel (1,000 units per reel)
FOD2200TV	DIP 8-Pin, 0.4" Lead Spacing, IEC60747-5-2 option	Tube (50 units per tube)
FOD2200TSV	SMT 8-Pin, 0.4" Lead Spacing, IEC60747-5-2 option	Tube (50 units per tube)
FOD2200TSR2V	SMT 8-Pin, 0.4" Lead Spacing, IEC60747-5-2 option	Tape and Reel (700 units per reel)

Carrier Tape Specifications (Option SD)

Symbol	Description	Dimension in mm
W	Tape Width	16.0 ± 0.3
t	Tape Thickness	0.30 ± 0.05
P_{0}	Sprocket Hole Pitch	4.0 ± 0.1
D_{0}	Sprocket Hole Diameter	1.55 ± 0.05
E	Sprocket Hole Location	1.75 ± 0.10
F	Pocket Location	7.5 ± 0.1
P_{2}		2.0 ± 0.1
P	Pocket Pitch	12.0 ± 0.1
$\mathrm{~A}_{0}$	Pocket Dimensions	10.30 ± 0.20
$\mathrm{~B}_{0}$		10.30 ± 0.20
$\mathrm{~K}_{0}$		4.90 ± 0.20
$\mathrm{~W}_{1}$	Cover Tape Width	13.2 ± 0.2
d	Cover Tape Thickness	0.1 max
	Max. Component Rotation or Tilt	10°
R	Min. Bending Radius	30

Carrier Tape Specifications (Option TSR2V)

Symbol	Description	Dimension in mm
W	Tape Width	24.0 ± 0.3
t	Tape Thickness	0.40 ± 0.1
P_{0}	Sprocket Hole Pitch	4.0 ± 0.1
D_{0}	Sprocket Hole Diameter	1.55 ± 0.05
E	Sprocket Hole Location	1.75 ± 0.10
F	Pocket Location	11.5 ± 0.1
P_{2}		2.0 ± 0.1
P	Pocket Pitch	16.0 ± 0.1
$\mathrm{~A}_{0}$	Pocket Dimensions	12.80 ± 0.1
$\mathrm{~B}_{0}$		10.35 ± 0.1
$\mathrm{~K}_{0}$		5.7 ± 0.1
$\mathrm{~W}_{1}$	Cover Tape Width	21.0 ± 0.1
d	Cover Tape Thickness	0.1 max
	Max. Component Rotation or Tilt	10°
R	Min. Bending Radius	30

Reflow Profile

Profile Freature	Pb-Free Assembly Profile
Temperature Min. (Tsmin)	$150^{\circ} \mathrm{C}$
Temperature Max. (Tsmax)	$200^{\circ} \mathrm{C}$
Time (t_{S}) from (Tsmin to Tsmax)	$60-120$ seconds
Ramp-up Rate (t_{L} to t_{P})	$3^{\circ} \mathrm{C} /$ second max.
Liquidous Temperature (T_{L})	$217^{\circ} \mathrm{C}$
Time (t_{L}) Maintained Above (T_{L})	$60-150$ seconds
Peak Body Package Temperature	$260^{\circ} \mathrm{C}+0^{\circ} \mathrm{C} /-5^{\circ} \mathrm{C}$
Time (t_{P}) within $5^{\circ} \mathrm{C}$ of $260^{\circ} \mathrm{C}$	30 seconds
Ramp-down Rate (T_{P} to T_{L})	$6^{\circ} \mathrm{C} /$ second max.
Time $25^{\circ} \mathrm{C}$ to Peak Temperature	8 minutes max.

FAIRCHILD
SEMICONDUCTOR*

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower ${ }^{\text {TM }}$	F-PFS ${ }^{\text {™ }}$	Power-SPM ${ }^{\text {™ }}$	\square SYSTEM ${ }^{\text {®** }}$
Auto-SPM ${ }^{\text {™ }}$	FRFET ${ }^{\text {® }}$	PowerTrench ${ }^{\text {® }}$	LGENERAL
Build it Now $^{\text {TM }}$	Global Power Resource ${ }^{\text {SM }}$	PowerXS ${ }^{\text {TM }}$	The Power Franchise
CorePLUS ${ }^{\text {TM }}$	Green FPS ${ }^{\text {TM }}$	Programmable Active Droop ${ }^{\text {TM }}$	O ${ }^{\text {the }}$ wer
CorePOWER ${ }^{\text {TM }}$	Green FPS $^{\text {™ }} \mathrm{e}$-Series ${ }^{\text {™ }}$	QFET ${ }^{\text {® }}$	franchise
CROSSVOLT ${ }^{\text {TM }}$	Gmax ${ }^{\text {™ }}$	QS ${ }^{\text {TM }}$	TinyBoost ${ }^{\text {TM }}$
CTL'm	GTO ${ }^{\text {™ }}$	Quiet Series ${ }^{\text {TM }}$	TinyBuck ${ }^{\text {TM }}$
Current Transfer Logic ${ }^{\text {TM }}$	IntelliMAX ${ }^{\text {™ }}$	RapidConfigure ${ }^{\text {TM }}$	TinyCalc ${ }^{\text {TM }}$
DEUXPEED ${ }^{\text {® }}$	ISOPLANAR ${ }^{\text {TM }}$	$\bigcirc)^{\text {mM }}$	TinyLogic ${ }^{\text {® }}$
Dual Cool ${ }^{\text {™ }}$	MegaBuck ${ }^{\text {™ }}$		TINYOPTOTM
EcoSPARK ${ }^{\text {® }}$	MICROCOUPLER ${ }^{\text {TM }}$	SignalWisetM	TinyPower ${ }^{\text {TM }}$
EfficientM ${ }^{\text {a }}$ TM	MicroFET ${ }^{\text {TM }}$	SmartMax ${ }^{\text {TM }}$	TinyPWM ${ }^{\text {™ }}$
ESBC'm	MicroPak ${ }^{\text {m }}$	SMART START ${ }^{\text {TM }}$	TinyWire ${ }^{\text {TM }}$
	MicroPak2 ${ }^{\text {TM }}$	SPM $^{\text {® }}$	TriFault Detect ${ }^{\text {TM }}$
Fairchild ${ }^{\text {® }}$	MillerDrive ${ }^{\text {TM }}$	STEALTH ${ }^{\text {™ }}$	TRUECURRENT ${ }^{\text {TM }}$ *
Fairchild Semiconductor ${ }^{\text {® }}$	MotionMax ${ }^{\text {TM }}$	SuperFET ${ }^{\text {TM }}$	"SerDes ${ }^{\text {TM }}$
FACT Quiet Series ${ }^{\text {TM }}$	Motion-SPM ${ }^{\text {TM }}$	SuperSOT ${ }^{\text {TM }} 3$	M
FACT^{\oplus}	OptoHiT ${ }^{\text {TM }}$	SuperSOT ${ }^{\text {TM }}$-6	SerDes"
FAST $^{\text {® }}$	OPTOLOGIC ${ }^{\text {® }}$	SuperSOT ${ }^{\text {TM }}$-8	UHC ${ }^{\text {® }}$
FastvCore ${ }^{\text {TM }}$	OPTOPLANAR	SupreMOS ${ }^{\text {® }}$	Ultra FRFET ${ }^{\text {TM }}$
FETBench ${ }^{\text {™ }}$		SyncFET ${ }^{\text {TM }}$	UniFETM
FlashWriter ${ }^{\text {®* }}$		Sync-Lock ${ }^{\text {TM }}$	VCX ${ }^{\text {TM }}$
FPS ${ }^{\text {TM }}$	PDP SPM ${ }^{\text {TM }}$		VisualMax™ $X S^{T M}$

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on ourexternal website, www.fairchildsemi.com, under Sales Support.
Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Farchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.
PRODUCT STATUS DEFINITIONS
Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

