: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Fault Protection Switch with Current Fold-back

Features

- Up to 100 V input voltage protection
- Low on resistance - 4.0Ω typical
- Fast switching speed
- No external supplies needed

Applications

- Power supplies
- Fast resettable fuse
- High side switches
- Data acquisition

General Description

The Supertex FP0100 is a high voltage fault protection switch with current fold-back. It is designed to protect system output power supplies against over-current or short circuit conditions. In protection mode, the FP0100 limits the current to $300 \mu \mathrm{~A}$.

The FP0100 can be considered as a normally closed switch with a typical switch resistance of 4.0Ω. The peak current allowed to pass through the switch can be set by an external resistor across VOUT and RSEN. Once the voltage drop across VIN and VOUT exceeds a nominal value of 3.0 V , the input current will fold-back to $300 \mu \mathrm{~A}$. In the off state, the FP0100 can withstand up to 100 V . Higher input voltages can be accommodated by using an external depletion-mode MOSFET. Please refer to Figure 4 for more details. The FP0100 is available in a SOT-89 package.

Typical Application Circuit

Ordering Information

Part Number	Package	Packing
FP0100N8-G	3-Lead SOT-89	2000/Reel

-G denotes a lead (Pb)-free / RoHS compliant package

Absolute Maximum Ratings

Parameter	Value
$\mathrm{V}_{\mathbb{I} \text { }}-\mathrm{V}_{\text {out }}$, differential input voltage range	0 to +110 V
Maximum junction temperature	$+125^{\circ} \mathrm{C}$
Storage temperature range	-65° to $+150^{\circ} \mathrm{C}$
Power dissipation, $\mathrm{T}_{\mathrm{A}} @ 25^{\circ} \mathrm{C}$	$1.6 \mathrm{~W}^{1}$

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Continuous operation of the device at the absolute rating level may affect device reliability. All voltages are referenced to device ground.

Pin Configuration

TO-243AA (SOT-89)

Product Marking

$Y=$ Code for year sealed
$W=$ Code for week sealed $\underline{ }=$ "Green" Packaging

Package may or may not include the following marks: Si or (\$i)
TO-243AA (SOT-89)
Typical Thermal Resistance

Package	$\boldsymbol{\theta}_{\text {ja }}$
3-Lead SOT-89	$133^{\circ} \mathrm{C} / \mathrm{W}$

Note:

1. Mounted on FR4 board, $25 \mathrm{~mm} \times 25 \mathrm{~mm} \times 1.57 \mathrm{~mm}$.

Electrical Characteristics $\left(T_{A}=25^{\circ} \mathrm{Cunless}\right.$ otherwise specified $)$

Sym	Parameter	Min	Typ	Max	Units	Conditions
$\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}$	Differential input voltage range	0	-	100	V	$\mathrm{V}_{\text {OUT }}=\mathrm{GND}, \mathrm{I}_{\text {IN }}=600 \mu \mathrm{~A}$
$\mathrm{I}_{\text {PEAK }}$	Peak current	-	260	-	mA	$\mathrm{R}_{\text {SEN }}=0 \Omega$
		-	20	40	mA	$\mathrm{R}_{\text {SEN }}=50 \Omega$
		-	10	20	mA	$\mathrm{R}_{\text {SEN }}=100 \Omega$
$\mathrm{I}_{\text {OFF }}$	Off current	-	300	600	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}=100 \mathrm{~V}$, See I-V curve
$\mathrm{R}_{\text {on }}$	On resistance	-	4.0	6.0	Ω	$\mathrm{I}_{\text {IN }}=20 \mathrm{~mA}, \mathrm{R}_{\text {SEN }}=0 \Omega$
$\mathrm{V}_{\text {TRIP }}$	$\mathrm{V}_{\mathrm{IN} \text { - out }}$ trip point to turn off	-	3.0	-	V	$\begin{aligned} & R_{\text {SEN }}=50 \Omega, I_{\text {IN }}=90 \% \text { of } I_{\text {PEAK }} \\ & \text { See } I-V \text { curve } \end{aligned}$
$\mathrm{V}_{\text {OFF }}$	Switch turn off voltage	-	-	4.5	V	$\mathrm{I}_{\text {OFF }} \leq 600 \mu \mathrm{~A}$
T_{J}	Operating junction temperature	-40	-	+125	${ }^{\circ} \mathrm{C}$	---

Block Diagram

Figure 1. Typical I-V Characteristics

Figure 2. Test Circuit for $\mathrm{I}_{\text {peak }}$ vs $\mathrm{R}_{\text {sen }}$

The input peak current, $I_{\text {PEAK }}$, can be lowered by adding an external resistor across the RSEN and VOUT pins as shown in the test circuit in Figure 2. I PEAK will decrease as the resis-
tor value of $R_{\text {SEN }}$ increases. The typical $I_{\text {PEAK }} v s R_{\text {SEN }}$ characteristic is shown in Figure 3.

Figure 3. Typical $\mathrm{I}_{\text {PEAK }}$ vs $\mathrm{R}_{\text {SEN }}$ Characteristic

Figure 4. Higher Input Voltage Application

Figure 5. Short Circuit Test Performance

The FP0100 has a typical response time of less than 30ns. The short circuit test set-up is shown in Figure 5. The output is at 60 V prior to a short. A 10Ω resistor is used to measure the current going into the FP0100. A 220nF ceramic capacitor is added on the input to supply any transient currents that
might occur. The waveform is shown in Figure 6. Channel 1 is the output voltage which is discharged to 0 V . Channel 2 is the voltage across the 10Ω resistor. The input current peaks to 400 mA then decays quickly within 20 ns .

Figure 6. Typical Short Circuit Waveforms

Pin Description

Pin \#	Pin Name	Description

1	VIN	Input voltage
2,4	VOUT	Output voltage
3	RSEN	Current sense for $\mathrm{I}_{\text {PEAK }}$ control. Connects to an external resistor across the RSEN and VOUT pins to set the $\mathrm{I}_{\text {PEAK. }}$

3-Lead TO-243AA (SOT-89) Package Outline (N8)

Top View

Side View

Symbol		A	b	b1	C	D	D1	E	E1	e	e1	H	L
$\begin{aligned} & \text { Dimensions } \\ & (\mathrm{mm}) \end{aligned}$	MIN	1.40	0.44	0.36	0.35	4.40	1.62	2.29	$2.00{ }^{+}$	$\begin{aligned} & 1.50 \\ & \text { BSC } \end{aligned}$	$\begin{aligned} & 3.00 \\ & \text { BSC } \end{aligned}$	3.94	$0.73{ }^{\text {t }}$
	NOM	-	-	-	-	-	-	-				-	-
	MAX	1.60	0.56	0.48	0.44	4.60	1.83	2.60	2.29			4.25	1.20

JEDEC Registration TO-243, Variation AA, Issue C, July 1986.
\boldsymbol{t} This dimension differs from the JEDEC drawing

Drawings not to scale.

Supertex Doc. \#: DSPD-3TO243AAN8, Version F111010.
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to http://www.supertex.com/packaging.html.)

[^0]
[^0]: Supertex inc. does not recommend the use of its products in life support applications, and will not knowingly sell them for use in such applications unless it receives an adequate "product liability indemnification insurance agreement." Supertex inc. does not assume responsibility for use of devices described, and limits its liability to the replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions and inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications refer to the Supertex inc. (website: http//www.supertex.com)

