Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs. With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas. We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry! # Contact us Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China # Coiltronics FP1008 Family # High frequency, high current power inductors #### **Product description** - · High current carrying capacity - · Low core loss - Controlled DCR for sensing circuits - Inductance range from 120nH to 180nH - Current range from 63 to 100 Amps - 10.8 x 8.0mm footprint surfaace mount package in a 8.0mm height - Ferrite core material - · Halogen free, lead free, RoHS compliant #### **Applications** - Multi-phase and Vcore regulators - Voltage Regulator Modules (VRMs) - Desktop and server VRMs and EVRDs - · Laptop and notebook regulators - · Data networking and storage systems - · Graphics cards and battery power systems - · Point-of-Load modules - · DCR Sensing circuits #### **Environmental data** - Storage temperature range (Component): -40°C to +125°C - Operating temperature range: -40°C to +125°C (ambient + self-temperature rise) - Solder reflow temperature: J-STD-020D compliant The Coiltronics brand of magnetics (formerly of the Bussmann Division of Cooper Industries) is now part of Eaton's Electrical Group, Electronics Division. Coiltronics is now part of Eaton Same great products plus even more. #### **Product specifications** | Part Number ⁹ | OCL¹
(nH)±10% | FLL ²
(nH) minimum | l _{rms} ³
(amps) | l _{sat} 1 ⁴
(amps) | l _{sat} 2 ⁵
(amps) | l _{sat} 3 ⁶
(amps) | l _{sat} 4 ⁷
(amps) | DCR (mΩ)
@ 20°C ±5% | K-factor ⁸ | |--------------------------|------------------|----------------------------------|------------------------------|---|---|---|---|------------------------|-----------------------| | FP1008-120-R | 120 | 82 | 63 | 100 | 95.0 | 91.0 | 82 | 0.17 | 366 | | FP1008-150-R | 150 | 104 | 63 | 82 | 78.0 | 75.0 | 68 | 0.17 | 366 | | FP1008-180-R | 180 | 130 | 63 | 64 | 60.8 | 58.6 | 53 | 0.17 | 366 | - 1. Open Circuit Inductance (OCL) Test Parameters: 100kHz, $0.1V_{\rm rms}$, 0.0Adc @ 25°C - 2. Full Load Inductance (FLL) Test Parameters: 100kHz, 0.1V_{ms}, I_{sat}1 - 3. I_{ms} : DC current for an approximate temperature rise of 40° C without core loss. Derating is necessary for AC currents. PCB layout, trace thickness and width, air-flow, and proximity of other heat generating components will affect the temperature rise. It is recommended that the temperature of the part not exceed 125°C under worst case operating conditions verified in the end application. - 4. I_{sat}1: Peak current for approximately 20% rolloff @ 25°C - 5. I 2: Peak current for approximately 20% rolloff @ 85°C - 6. Isat 3: Peak current for approximately 20% rolloff @ 100°C - 7. I_{sat}4: Peak current for approximately 20% rolloff @ 125°C - 8. K-factor: Used to determine B_{pa} for core loss (see graph). $B_{nn} = K * L * \Delta I * 10^{-3}$. B_{nn} : (Gauss), K: (K-factor from table), L: (Inductance in nH), ΔI (Peak-to-peak ripple current in Amps). - 9. Part Number Definition: FP1008-xxx-R - FP1008= Product code and size - xxx= Inductance value in nH - "-R" suffix = RoHS compliant #### **Dimensions (mm)** Schematic DCR measured from point "A" to point "B" Part marking: FP1008-xxx, xxx = inductance value in nH wwllyy = date code, R = revision level Tolerances are ±0.205 millimeters unless stated otherwise. All soldering surfaces to be coplanar within 0.1 millimeter Do not route traces or vias underneath the inductor Section A - A ## Packaging information (mm) Supplied in tape-and-reel packaging, 350 parts on a 13" diameter reel. User Direction of Feed # Core loss vs. B _{p-p} ## **Inductance characteristics** ## **Inductance characteristics** ### Solder reflow profile Table 1 - Standard SnPb Solder (T_C) | Package
Thickness | Volume
mm3
<350 | Volume
mm3
≥350 | |----------------------|-----------------------|-----------------------| | <2.5mm) | 235°C | 220°C | | ≥2.5mm | 220°C | 220°C | Table 2 - Lead (Pb) Free Solder (T_C) | Package
Thickness | Volume
mm³
<350 | Volume
mm³
350 - 2000 | Volume
mm³
>2000 | |----------------------|-----------------------|-----------------------------|------------------------| | <1.6mm | 260°C | 260°C | 260°C | | 1.6 - 2.5mm | 260°C | 250°C | 245°C | | >2.5mm | 250°C | 245°C | 245°C | #### Reference JDEC J-STD-020D | Profile Feature | Standard SnPb Solder | Lead (Pb) Free Solder | | |--|-------------------------|-------------------------|--| | Preheat and Soak • Temperature min. (T _{smin}) | 100°C | 150°C | | | Temperature max. (T _{smax}) | 150°C | 200°C | | | • Time (T _{smin} to T _{smax}) (t _s) | 60-120 Seconds | 60-120 Seconds | | | Average ramp up rate T_{Smax} to T_{p} | 3°C/ Second Max. | 3°C/ Second Max. | | | Liquidous temperature (TL) Time at liquidous (tL) | 183°C
60-150 Seconds | 217°C
60-150 Seconds | | | Peak package body temperature (Tp)* | Table 1 | Table 2 | | | Time (t _p)** within 5 °C of the specified classification temperature (T _c) | 20 Seconds** | 30 Seconds** | | | Average ramp-down rate (T _p to T _{smax}) | 6°C/ Second Max. | 6°C/ Second Max. | | | Time 25°C to Peak Temperature | 6 Minutes Max. | 8 Minutes Max. | | $^{^{*}}$ Tolerance for peak profile temperature (T $_{\rm p}$) is defined as a supplier minimum and a user maximum. Life Support Policy: Eaton does not authorize the use of any of its products for use in life support devices or systems without the express written approval of an officer of the Company. Life support systems are devices which support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. Eaton Electronics Division 1000 Eaton Boulevard Cleveland, OH 44122 United States www.eaton.com/elx © 2015 Eaton All Rights Reserved Printed in USA Publication No. 10155 — BU-SB14841 March 2015 ^{**} Tolerance for time at peak profile temperature (tp) is defined as a supplier minimum and a user maximum.