

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, emplo

February 2015

FPF2488 Dual Channel Over-Voltage Protection Load Switch

Features

Dual Channel Power Switch (V_{BUS} and V_{IF})

Surge Protection under IEC 61000-4-5

V_{BUS}: ±100 VV_{IF}: ±40 V

Input Voltage Range

V_{BUS}: 2.5 V ~ 23 VV_{IF}: 3.1 V ~ 5.5 V

Max Continuous Current Capability

V_{BUS}: 2.5 AV_{IF}: 6 A

Ultra Low On-Resistance

- V_{BUS}: Typ. 33 m Ω - V_{IF}: Typ. 10 m Ω

Over Voltage Protection

- V_{BUS} : 10 V ± 100 mV - V_{IF} : 5.25 V ± 250 mV

LDO Output based V_{BUS_DET} for V_{BUS} Detection

Active Low Control for V_{BUS} Path

OTG Functionality on V_{BUS} Path

Conditional Active High Control for V_{IF} Path

■ Reverse-Current Blocking for V_{IF} Path

Applications

- Mobile Handsets and Tablets
- Wearable Devices

Description

The FPF2488 features a 2-channel power switch, which offers surge protection and Over-Voltage Protection (OVP), to protect downstream components and enhancing overall system robustness.

Channel one (V_{BUS}) is an active-low, 28 V/2.5 A rated, power MOSFET switch with an internal clamp supporting ± 100 V surge protection, highly accurate fixed OVP at 10.0 V (± 100 mV), and OTG functionality. Channel two (V_{IF}) is a conditional active-high, 6 V/6 A rated, power MOSFET switch with an integrated TVS supporting \pm 40 V surge protection and fixed OVP at 5.25 V (\pm 250 mV). V_{IF} also provides Reverse Current Blocking (RCB) during its OFF state to minimize leakage current.

V_{BUS_DET} is paired with always ON LDO to power downstream devices even with VBUS is greater than 2.5 V, even when disabled through the ONB pin. This provides power sequence control or a host controlled configuration in system.

The FPF2488 is available in a 15-bump, 1.6 mm x 2.2 mm Wafer-Level Chip-Scale Package (WLCSP) with 0.4 mm pitch.

Related Resources

http://www.fairchildsemi.com/

Ordering Information

Part Number	r Operating Temperature Range		op Mark Package	
FPF2488UCX	-40°C – +85°C	GW	15-Ball, 0.4 mm Pitch WLCSP	Tape & Reel

Application Diagram

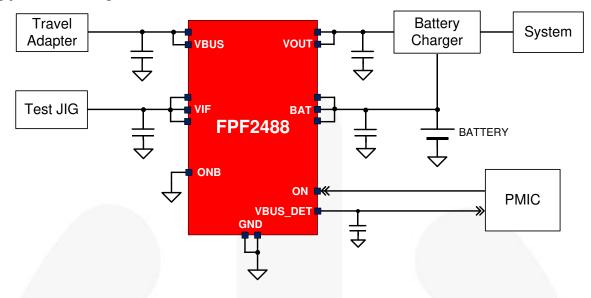


Figure 1. Typical Application

Block Diagram

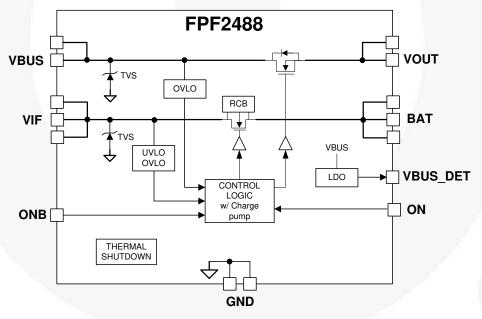
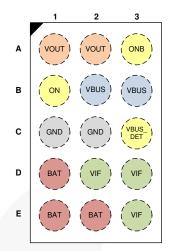



Figure 2. Functional Block Diagram

Pin Configuration

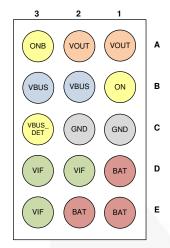


Figure 3. Pin Configuration (Top View)

Figure 4. Pin Configuration (Bottom View)

Pin Definitions

Name	Bump	Туре	Description	
V _{BUS}	B2, B3	Input/Supply	Switch Input and Device Supply	
VOUT	A1, A2	Output	Switch Output to Load	
V_{IF}	D2, D3, E3	Input/Supply	Switch Input and Device Supply	
BAT	D1, E1, E2	Output	Switch Output to Battery	
V _{BUS_DET}	C3	Output	Regulated Output according to V _{BUS}	
ON	B1	Input	Active HIGH: V_{IF} path only and when BAT is valid prior to V_{IF}	
ONB	A3	Input	Active LOW: V _{BUS} path only	
GND	C1, C2	GND	Ground	

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol		Min.	Max.	Unit		
V _{BUS}	V _{BUS} to GND & V _{BUS} to VOUT=GND or Float				29.0	٧
V _{IF}	V _{IF} to GND					
V _{OUT}	V _{OUT} to GND			-0.3	$V_{IN} + 0.3$	٧
BAT	BAT to GND			-0.3	V _{IF} + 0.3	V
V _{BUS_DET}	V _{BUS_DET} to GND				8	V
V _{ON(B)}	ONB or ON to GND				6	V
1	Continuous V _{BUS} Current				2.5	Α
I _{IN_VBUS}	Peak V _{BUS} Current (5 ms)		- //		5	Α
	Continuous V _{IF} Current				6	Α
I _{IN_VIF}	Peak V _{IF} Current (5 ms)				12	Α
I _{IN_VBUS_DET}	Continuous V _{BUS_DET} Current		1	mA		
t _{PD}	Total Power Dissipation at T		1.54	W		
T _{STG}	Storage Temperature Range	-65	+150	°C		
T_J	Maximum Junction Tempera		+150	°C		
TL	Lead Temperature (Soldering		+260	°C		
Θ_{JA}	Thermal Resistance, Junction-to-Ambient ⁽²⁾ (1-in. ² Pad of 2-oz. Copper)				81 ⁽²⁾	°C/W
	Electrostatic Discharge	IEC 61000-4-2 System Level ESD	Air Discharge	15.0		
			Contact Discharge	8.0		
ESD		Human Body Model, ANSI/ESDA/JEDEC JS- 001-2012	All Pins	2		kV
	Capability	Charged Device Model, JESD22-C101	All Pins	1		
Surgo		IEC 61000-4-5,	V _{BUS}	±100	Ţ	V
Surge		Surge Protection	V _{IF}	±40	7	

Notes:

- 1. Pulsed, 50 ms maximum non-repetitive.
- 2. Measured using 2S2P JEDEC std. PCB.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter		Max.	Unit
V _{BUS}	Supply Voltage, V _{BUS}	2.5	23.0	V
V _{IF}	Supply Voltage, V _{IF}	3.1	5.5	V
C _{IN} / C _{OUT}	Input and Output Capacitance			μF
C _{VBUS_DET}	Output Capacitance			μF
T _A	Operating Temperature	-40	+85	°C

Electrical Characteristics

Unless otherwise noted, V_{BUS} =2.5 to 23 V, V_{IF} =3.1 to 5.5 V, T_{A} =-40 to 85°C; Typical values are at V_{BUS} =5 V, $I_{IN} \le 2$ A, V_{IF} =4 V, C_{IN} =0.1 μF and T_{A} =25°C.

Symbol	Parameter	Conditions		Тур.	Max.	Unit
Basic Operat	tion	,	I	I	ı	
	January Outlinear and Outmand	V _{BUS} =5 V, ONB=0 V, V _{BUS_DET} =Floating		160	250	μА
lα	Input Quiescent Current	V _{IF} =4 V		100	150	μΑ
1	OVI O Cupply Current	V _{BUS} =12 V, V _{OUT} =0 V, V _{BUS} _DET=Floating		150	205	μA
I _{IN_Q}	OVLO Supply Current	V _{IF} =5.5 V, BAT=0 V		100	180	μΑ
T_{SDN}	Thermal Shutdown ⁽³⁾			140		°C
T _{SDN_HYS}	Thermal Shutdown Hysteresis ⁽³⁾			20		°C
V _{BUS} to VOL	JT Switch				•	
V _{BUS_CLAMP}	Input Clamping Voltage	I _{IN} =10 mA		35		V
	Over Welter or Trial Level	V _{BUS} Rising, T _A =-40 to 85°C	9.9	10.0	10.1	V
V_{BUS_OVLO}	Over-Voltage Trip Level	V _{виs} Falling, T _{A=} -40 to 85°C	9.8			V
_ /	0 0 11	V _{BUS} =5 V, I _{OUT} =1 A, T _A =25°C		33	39	mΩ
R _{ON_VBUS}	On-Resistance	V _{BUS} =9 V, I _{OUT} =1 A, T _A =25°C		33	39	mΩ
t _{DEB_VBUS}	Debounce Time	Time from $V_{BUS_MIN} < V_{BUS} < V_{BUS_OVLO}$ to $V_{OUT} = 0.1 \times V_{BUS}$		15		ms
tstart vbus	Soft-Start Time	Time from V _{BUS} =V _{BUS} MIN to 0.1 × V _{BUS} DET		30	À	ms
t _{ON_VBUS}	Switch Turn-On Time	$R_L {=} 100~\Omega,~C_L {=} 22~\mu F,~V_{OUT}~from~0.1~\times~V_{BUS}$ to $0.9~\times~V_{BUS}$	Y	3		ms
t _{OFF_VBUS}	Switch Turn-Off Time	R_L =100 Ω , No C_L , $V_{BUS} > V_{BUS_OVLO}$ to V_{OUT} =0.8 \times V_{BUS}			150	ns
V _{IF} to BAT S	Switch				•	
V _{IF_CLAMP}	Input Clamping Voltage	I _{IN} =10 mA		6.4		V
M	Hadaa Waltana Tria Laval	V _{IF} Rising, T _A =-40 to 85°C		2.85	3.05	V
V_{IF_UVLO}	Under-Voltage Trip Level	V _{IF} Falling, T _A =-40 to 85°C		2.7		V
V	Over Veltage Trip Level	V _{IF} Rising, T _A =-40 to 85°C	5.00	5.25	5.50	٧
V_{IF_OVLO}	Over-Voltage Trip Level	V _{IF} Falling, T _A =-40 to 85°C	4.8			V
R _{ON_VIF}	On-Resistance	V _{IF} =3.1 V, I _{OUT} =1 A, T _A =25°C		10	15	mΩ
I _{RCB}	Reverse Current	V _{IF} =0 V, BAT=4.4 V		3	7	μΑ
t _{DEB_VIF}	Debounce Time	Time from $V_{IF_UVLO} < V_{IF} < V_{IF_OVLO}$ to BAT=0.1 × V_{IF}		15		ms
tqual_vif	Qualification Time	BAT > V _{IH_BAT} First, Time from ON > V _{IH_ON(B)} to BAT Voltage Increase		30		ms
t _{ON_} vif	Switch Turn-On Time	$R_L{=}100~\Omega,~C_L{=}22~\mu\text{F},~V_{OUT}~\text{from}~0.1~\times\text{VIF}~\text{to}\\0.9~\times\text{VIF}$		3	1	ms
toff_vif	Switch Turn-Off Time	$R_L{=}100~\Omega,~No~C_L,V_{IN}>V_{OVLO}$ to $V_{OUT}{=}0.8~\times~VIF$			150	ns

Note:

3. Guaranteed by characterization and design.

Continued on the following page...

Electrical Characteristics

Unless otherwise noted, V_{BUS} =2.5 to 23 V, V_{IF} =3.1 to 5.5 V, T_{A} =-40 to 85°C; Typical values are at V_{BUS} =5 V, $I_{IN} \le 2$ A, V_{IF} =4 V, C_{IN} =0.1 μF and T_{A} =25°C.

Symbol	Parameter		Conditions	Min.	Тур.	Max.	Unit
V _{BUS_DET}							
			V _{BUS} =6.5 V, I _{BUS_DET} =0 mA, T _A =25°C	6.0		6.5	٧
V _{BUS_DET}	V _{BUS_DET} Output Voltage		V _{BUS} =15 V, I _{BUS_DET} =0 mA, T _A =25°C	6.0	7.0	7.9	V
			V _{BUS} =6.5 V, I _{BUS_DET} =1 mA, T _A =25°C	6.0	6.3	6.5	٧
			V _{BUS} =15 V, I _{BUS_DET} =1 mA, T _A =25°C	6.0	7.0	7.9	٧
Digital Signals							
V _{IH_ON(B)}	Enable HIGH Voltage		V _{BUS} , V _{IF} Operating Range	1.2			V
$V_{\text{IL_ON(B)}}$	Enable LOW Voltage		V _{BUS} , V _{IF} Operating Range			0.5	٧
V _{IH_BAT}	BAT Presence HIGH Voltag	ge	BAT Rising	2.6			V
V_{IL_BAT}	BAT Presence Low Voltage)	BAT Falling			1.7	٧
I _{VBUS_DET_LEAK}	V _{BUS_DET} Leakage Current		V _{VBUS_DET} =5 V, V _{BUS} =0 V			1	μΑ
O _{NB_Leak}	ONB Leakage Current		V _{BUS} =5 V, V _{OUT} =Float			1	μΑ

Timing Diagrams

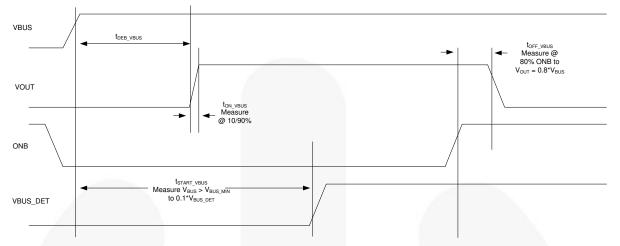


Figure 5. Timing for V_{BUS} Power Up/Down and Normal Operation

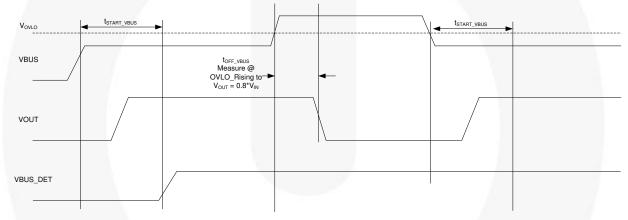


Figure 6. Timing for V_{BUS} OVLO Operation (ONB=LOW)

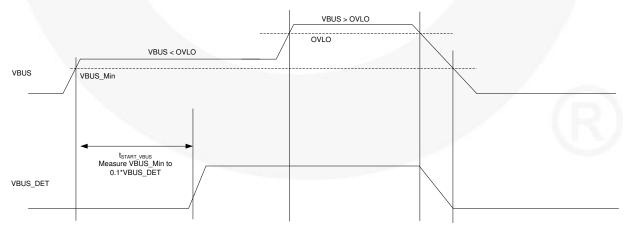


Figure 7. Always ON V_{BUS_DET} Operation (ONB=HIGH)

Timing Diagrams (Continued)

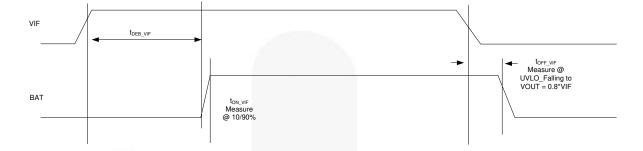


Figure 8. Timing for V_{IF} Power Up/Down and Normal Operation (ON=Don't Care)

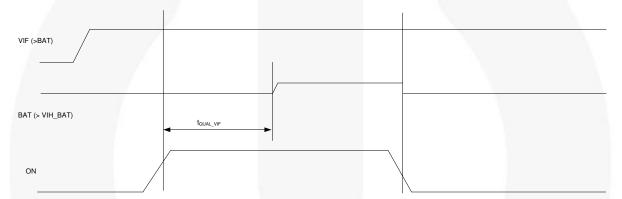


Figure 9. Timing for V_{IF} Power Up/Down and Normal Operation with ON Pin

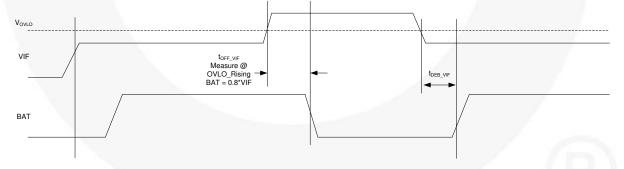
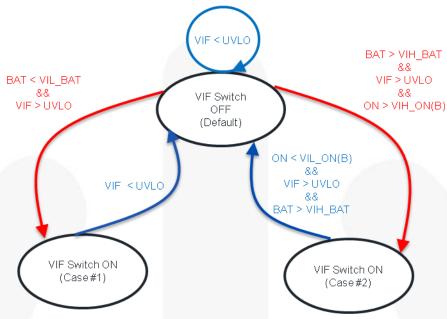
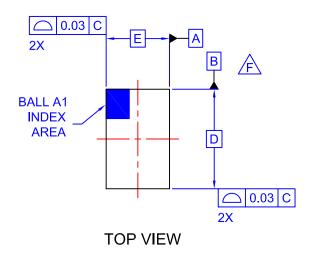
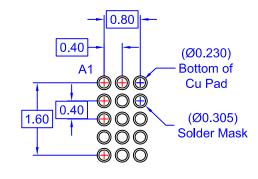


Figure 10. Timing for V_{IF} OVLO Operation (ON=Don't Care)

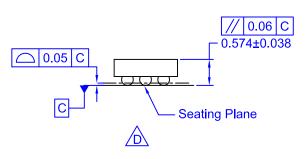
V_{IF} Turn-On Qualification State Diagram

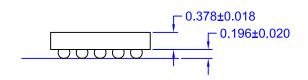


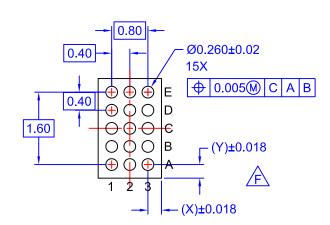

Figure 11. V_{IF} Turn-On Qualification State Diagram


Notes:

- 4. Case #1 is reflecting removable battery system without ON signal.
- 5. Case #2 is reflecting embedded battery system with ON signal.


Product-Specific Dimensions


D	E	X	Υ
2200 μm ±30 μm	1600 µm ±30 µm	400 μm ±18 μm	300 μm ±18 μm



RECOMMENDED LAND PATTERN (NSMD TYPE)

SIDE VIEWS

BOTTOM VIEW

NOTES

- A. NO JEDEC REGISTRATION APPLIES.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCE PER ASMEY14.5M, 2009.
- D. DATUM C IS DEFINED BY THE SPHERICAL CROWNS OF THE BALLS.
- E PACKAGE NOMINAL HEIGHT IS 574 ± 38 MICRONS (536-612 MICRONS).
- F. FOR DIMENSIONS D, E, X, AND Y SEE PRODUCT DATASHEET.
- G. DRAWING FILNAME: MKT-UC015AC REV2.

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and h

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Phone: 421 33 790 2910

Japan Customer Focus Center

Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative