

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, emplo

April 2017

FPF3042 IntelliMAX™ 18 V-Rated, Dual-Input, Single-Output, Power-Source-Selector Switch

Features

- Dual-Input, Single-Output Load Switch (DISO)
- Input Supply Operating Range:
 - 4.0 V~12.4 V at V_{IN}
 - 4.0 V~12.4 V at V_{BUS}
- Typical R_{ON}:
 - 95 m Ω at V_{IN}=5 V
 - 70 mΩ at V_{BUS}=5 V
- Bidirectional Switch for VIN and VBUS
- Slew Rate Controlled:
 - 50 μ s at V_{IN} for $< 4.7 \mu$ F C_{OUT}
 - 90 μ s at V_{BUS} for < 4.7 μ F C_{OUT}
- Maximum I_{SW}: 2.7 A per Channel
- Break-Before-Make Transition
- Under-Voltage Lockout (UVLO)
- Over-Voltage Lockout (OVLO)
- Thermal Shutdown
- Logic CMOS IO Meets JESD76 Standard for GPIO Interface and Related Power Supply Requirements
- ESD Protected:

Human Body Model: >3 kV
Charged Device Model: >1.5 kV
IEC 61000-4-2 Air Discharge: >15 kV

- IEC61000-4-2 Contact Discharge: >8 kV

Description

The FPF3042 is an 18 V-rated Dual-Input Single-Output (DISO) load switch consisting of two channels of slew-rate-controlled, low-on-resistance, N-channel MOSFET switches with protection features. The slew-rate-controlled turn-on characteristic prevents inrush current and the resulting excessive voltage droop on the input power rails. The input voltage range operates from 4.0 V to 12.4 V at both V_{BUS} and V_{IN} to align with the needs of high-voltage portable device power rails.

Both V_{IN} and V_{BUS} have the over-voltage protection of 14 V (typical) to avoid damage to the system.

 V_{IN} and V_{BUS} bidirectional switching allows reverse current from V_{OUT} to V_{IN} or V_{BUS} for On-The-Go, (OTG) Mode. The switching is controlled by logic input EN and $V_{\text{IN_SEL}}$ is capable of interfacing directly with low-voltage control signal General-Purpose Input / Output (GPIO).

FPF3042 is available in 1.76 mm x 1.96 mm Wafer-Level Chip-Scale Package (WLCSP), 16-bump, 0.4 mm pitch.

Applications

- Input Power-Selection Block Supporting USB and Wireless Charging
- Smart Phone / Tablet PC

Ordering Information

Part Number	Top Mark	Channel	Typical R _{ON} per Channel at 5 V _{IN}	Rise Time (t _R)	Package
			95 m Ω for V_{IN}	50 μs for V_{IN}	16-Bump, 1.76 mm x 1.96 mm,
FPF3042UCX	TR	DISO	70 mΩ for V _{BUS}	90 μs for V _{BUS}	Wafer-Level Chip-Scale Package (WLCSP), 0.4 mm Pitch

Application Diagram

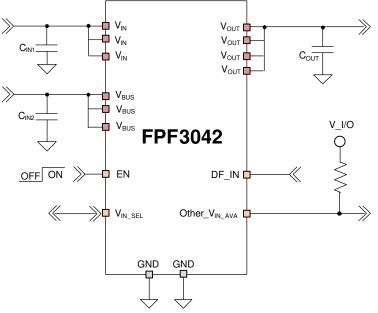


Figure 1. Typical Application

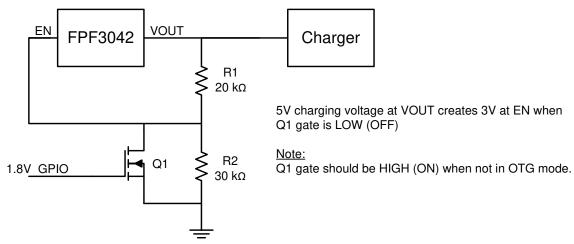


Figure 2. Example Circuit for OTG Operation with Low-Voltage GPIO

Block Diagram

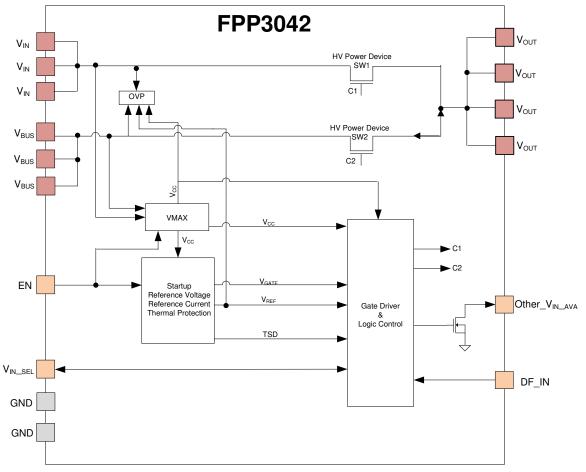


Figure 3. Functional Block Diagram

Pin Configuration

Figure 4. Pin Assignment (Top View)

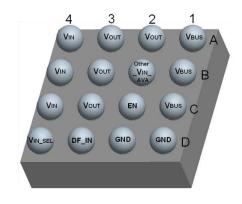


Figure 5. Pin Assignment (Bottom View)

Pin Description

Pin #	Name	Input / Output	Description
A1, B1, C1	V _{BUS}	Input / Output	V _{BUS} at USB: Power input / output; bi-directional switch when V _{IN_SEL} = LOW.
A4, B4, C4	V _{IN}	Input / Output	V _{IN} Supply Input: Power input / output; bi-directional switch when V _{IN_SEL} = HIGH.
A2, A3, B3, C3	V _{OUT}	Input / Output	Switch Output: Power input / output
C2	EN	Input	Enable: Active HIGH; EN voltage ≥ 2.5 V can power internal circuit when V _{IN} and V _{BUS} are absent. 1 MΩ pull-down resistor is included.
D4	V _{IN_SEL}	Input / Output	Supply Selector & Status: Input power source selection input and status output. This signal is ignored during EN=LOW. Selector input during EN=HIGH: HIGH = switch V _{IN} to V _{OUT} / LOW = switch V _{BUS} to V _{OUT} . Status output during EN=LOW: HIGH = V _{IN} is used for V _{OUT} / LOW = V _{BUS} is used for V _{OUT} .
D3	DF_IN	Input	Default Supply Selector during EN=LOW: Floating = V _{BUS} connects to V _{OUT} . LOW = V _{IN} connects to V _{OUT} . This signal is ignored during EN=HIGH. 1 μA pull-up current source is included.
B2	Other_VIN_AVA	Output	Other Supply Input Status: Open-drain output. HIGH-Z = both V _{IN} and V _{BUS} are valid. LOW = the other power source is not valid.
D1, D2	GND		Ground

Table 1. **Truth Table**

EN	V _{IN} >V _{UVLO}	V _{BUS} >V _{UVLO}	V _{IN_SEL}	DF_IN	Other_V _{IN_AVA}	V _{out}	Comment
HIGH	Х	Х	LOW	Х	HI-Z if VIN & VBUS > VUVLO LOW if VIN or VBUS < VUVLO	V _{BUS}	Vout is selected by
HIGH	Х	Х	HIGH	Х	HI-Z if V _{IN} & V _{BUS} >V _{UVLO} LOW if V _{IN} or V _{BUS} <v<sub>UVLO</v<sub>	V _{IN}	Bidirectional channel
LOW	YES	NO	HIGH	Х	LOW	V_{IN}	Automatic selection to
LOW	NO	YES	LOW	Х	LOW	V_{BUS}	valid input V _{IN_SEL} is output.
LOW	YES	YES	LOW	Floating	HIGH-Z	V_{BUS}	V _{OUT} is selected by
LOW	YES	YES	HIGH	LOW	HIGH-Z	V _{IN}	DF_IN V _{IN_SEL} is output.
LOW	NO	NO	NO	Х	Floating	Floating	OFF

Notes:

- Internal pull-down at EN.
 1 μA pull-up current source at DF_IN.

Absolute Maximum Ratings

Stresses exceeding the Absolute Maximum Ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol		Parameters				
	V. V. to CND	-1.4	18.0			
.,,	V _{IN} , V _{BUS} to GND Pulsed, 100 ms Maximum Non-Repetitive				10.0	.,
V _{PIN}	V _{OUT} to GND ⁽³⁾			-0.3	16.0	V
	EN, DF_IN, V _{IN_SEL} , Ot	her_V _{IN_AVA} to GND		-0.3	6.0	
			T _A =25°C		2.70	
	Maximum Continuous Switch Current per Channel				2.70	
Isw	Maximum Continuous	T _A =75°C		2.50	A	
	T _A =85°C				2.25	
tpD	Total Power Dissipatio	n at T _A =25°C		2.25	W	
TJ	Operating Junction Te	mperature		-40	+150	°C
T _{STG}	Storage Junction Temp	perature	erature			
ӨЈА	Thermal Resistance, J	unction-to-Ambient (1in. Square	Pad of 2 oz. Copper)		55 ⁽⁴⁾	°C/W
		Human Body Model, ANSI/ESDA/JEDEC JS-001-2012				
	Electrostatic Discharge Capability	Charged Device Model, JESD22-C101				
ESD		IEC61000-4-2 System Level ⁽⁵⁾	Air Discharge (V _{IN} , V _{BUS} to GND)	15.0		kV
		TEGO 1000-4-2 System Levers	Contact Discharge (V _{IN} , V _{BUS} to GND)	8.0		

Notes:

- 3. If an external voltage of more than 13 V is applied to V_{OUT} , the slew rate should be <1 V/ms from 13 V.
- 4. Measured using 2S2P JEDEC standard PCB.
- 5. System-level ESD can be guaranteed by design.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. ON Semiconductor does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameters	Min.	Max.	Unit
\/	V _{IN}	4.0	12.4	\/
V _{PIN}	V _{BUS}	4.0	12.4	V
TA	Ambient Operating Temperature	-40	+85	°C

Electrical Characteristics

 V_{IN} =4 to 12.4 V, V_{BUS} =4 to 12.4 V, T_{A} =-40 to 85°C unless otherwise noted. Typical values are at V_{IN} = V_{BUS} =5 V, EN=HIGH and T_{A} =25°C unless otherwise noted.

Symbol	Parameters	Condition	Min.	Тур.	Max.	Unit
VIN	Input Voltage from V _{IN}		4.0		12.4	٧
V _{BUS}	Input Voltage from V _{BUS}		4.0		12.4	V
	0 : .0 .	I _{OUT} =0 mA, EN=HIGH, V _{IN} or V _{BUS} =5 V		55	120	μA
la	Quiescent Current	I _{OUT} =0 mA, EN=5 V, V _{IN} and V _{BUS} =GND		33	70	μΑ
		V _{IN} =12 V, I _{OUT} =200 mA, T _A =25°C		95		
		V _{IN} =8 V, I _{OUT} =200 mA, T _A =25°C		95		
	On Resistance for V _{IN}	V _{IN} =5 V, I _{OUT} =200 mA, T _A =25°C		95	150	mΩ
Б		V _{IN} =5 V, I _{OUT} =200 mA, T _A =25°C to 85°C ⁽⁶⁾			200	
Ron		V _{BUS} =12 V, I _{OUT} =200 mA, T _A =25°C		70		
		V _{BUS} =6 V, I _{OUT} =200 mA, T _A =25°C		70		
	On Resistance for V _{BUS}	V _{BUS} =5 V, I _{OUT} =200 mA, T _A =25°C		70	100	mΩ
		V _{BUS} =5 V, I _{OUT} =200 mA, T _A =25°C to 85°C ⁽⁶⁾			140	
V _{IH}	Input Logic High Voltage	V _{IN} , V _{BUS} = 4.0 V~12.4 V	1.15			V
VIL	Input Logic Low Voltage	V _{IN} , V _{BUS} =4.0 V~12.4 V			0.52	٧
V _{EN(OTG)}	EN Voltage in OTG Mode ⁽⁶⁾	Vin & Vbus=Float or Vin & Vbus < Vuvlo	2.5			V
R _{EN_PD}	Pull-Down Resistance at EN			1000		kΩ
Protectio	n					
V	Linder Voltage Leekeut Threehold	V _{IN} or V _{BUS} Rising	3.05	3.50	4.00	V
Vuvlo	Under-Voltage Lockout Threshold	V _{IN} or V _{BUS} Falling	2.55	3.00	3.55	٧
Vuvhys	Under-Voltage Lockout Hysteresis			0.5		٧
		V _{IN} Rising Threshold	12.9	14.0	15.0	٧
Vovlo	Over-Voltage Lockout Threshold	V _{IN} Falling Threshold	12.4	13.5	14.5	V
VOVLO		V _{BUS} Rising Threshold	12.9	14.0	15.0	V
		V _{BUS} Falling Threshold	12.4	13.5	14.5	V
Voveys	Over-Voltage Lockout Hysteresis	Vin		0.5		V
VOVHYS	Over-voltage Lockout Hysteresis	V _{BUS}		0.5		V
T _{SDN}	Thermal Shutdown Threshold			150		°C
T _{SDNHYS}	Thermal Shutdown Hysteresis			20		°C
Reverse (Current Blocking (RCB)					
I _{RCB}	VIN or VBUS Current During RCB	V _{OUT} =8 V, V _{IN} or V _{BUS} =GND			30	μΑ
Dynamic	Characteristics					
+_	Vout Rise Time, V _{BUS} (6,7)			90		μs
t _R	V _{OUT} Rise Time, V _{IN} (6.7)	V V 5V D 4500 0 47 5		50		
tғ	V _{OUT} Fall Time ^(6,7)	$V_{IN}=V_{BUS}=5$ V, $R_{L}=150$ Ω , $C_{L}=4.7$ μF , $T_{A}=25$ °C		1.4		ms
ttran	Transition Delay(6,7)		50	100		ms
t _{SD}	Selection Delay(6,7)			50		μs

Notes:

- 6. This parameter is guaranteed by characterization and/or design; not production tested.
- 7. t_{SD}/t_{TRAN}/t_R/t_F are defined in Figure 6.

Timing Diagram

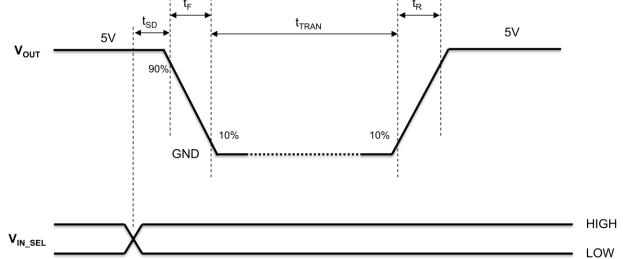
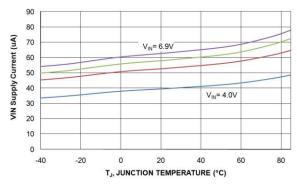



Figure 6. Transition Delay ($V_{IN}=V_{BUS}=5~V$)

Typical Characteristics

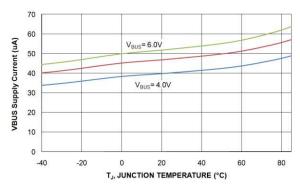
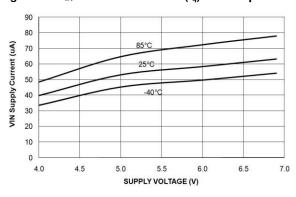



Figure 7. VIN Quiescent Current (Ia) vs. Temperature Figure 8. VBUS Quiescent Current (Ia) vs. Temperature

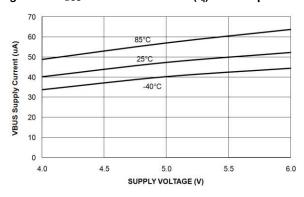


Figure 9. V_{IN} Quiescent Current vs. Supply Voltage

Figure 10. V_{BUS} Quiescent Current vs. Supply Voltage

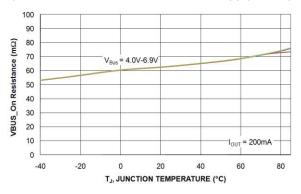


Figure 11. V_{IN} On Resistance (m Ω) vs. Temperature

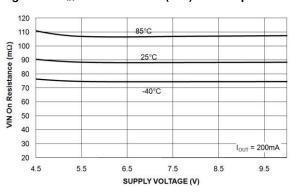


Figure 12. V_{BUS} On Resistance (m Ω) vs. Temperature

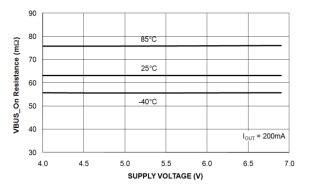


Figure 13. V_{IN} On Resistance (m Ω) vs. Supply Voltage Figure 14. V_{BUS} On Resistance (m Ω) vs. Supply Voltage

Typical Characteristics (Continued)

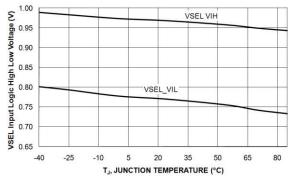
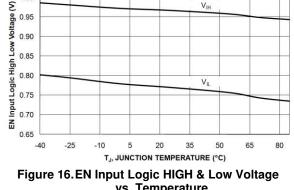



Figure 15.V_{IN}_SEL Input Logic HIGH & Low Voltage vs. Temperature

1.00

vs. Temperature

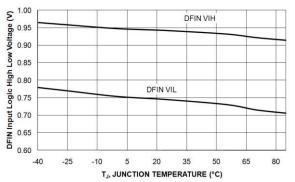


Figure 17.DF_IN Logic HIGH & Low Voltage vs. Temperature

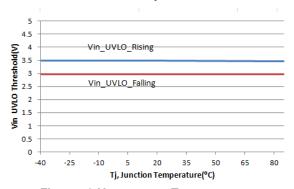


Figure 18. V_{IN_VULVO} vs. Temperature

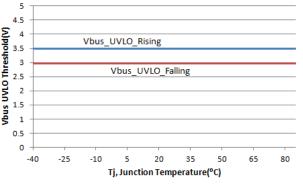


Figure 19. VBUS_VULVO vs. Temperature

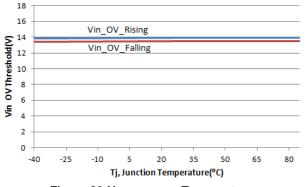


Figure 20. VIN_VOVLO vs. Temperature

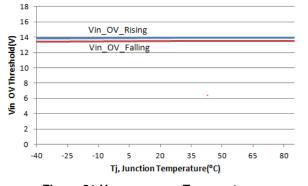


Figure 21. V_{BUS_VOVLO} vs. Temperature

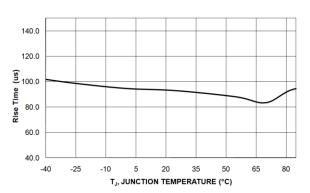
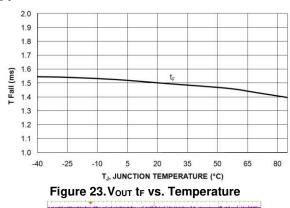
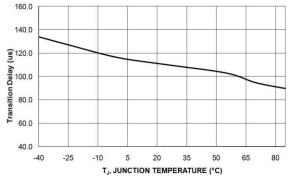




Figure 22. Vout t_R vs. Temperature

Typical Characteristics (Continued)

Other_Vin_Ava [5V/div]

VIN_SEL [5V/div]

VOUT [2V/div]

Figure 24.ttran vs. Temperature

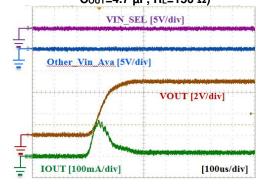


Figure 25. Power Source Transition (V_{IN}=V_{BUS}=5 V, EN=HIGH, V_{IN}_SEL=LOW→HIGH→LOW, C_{OUT}=4.7 μF, R_L=150 Ω)

IOUT [100mA/div]

[100ms/div]

Figure 26. V_{IN} On Response (V_{IN}=GND→5 V, V_{BUS}=EN=GND, C_{OUT}=4.7 μF, R_L=150 Ω)

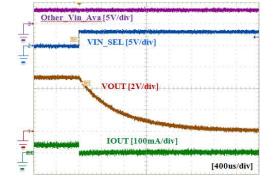
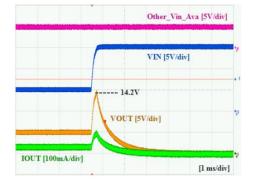



Figure 27.V_{BUS} On Response (V_{BUS}=GND \rightarrow 5 V, V_{IN}=EN=GND, C_{OUT}=4.7 μ F, R_L=150 Ω)

Figure 28.Off Response (V_{IN}=V_{BUS}=5 V, EN=HIGH, V_{IN}_SEL=LO \rightarrow HIGH or HIGH \rightarrow LOW, C_{OUT}=4.7 μ F, R_L=150 Ω)

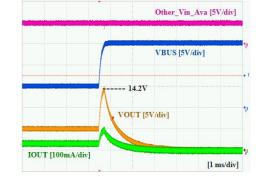


Figure 29.V_{IN} Over-Voltage Protection Response (V_{IN}=5 V→15 V, V_{BUS}=5 V, EN=V_{IN}_SEL=HIGH, C_{OUT}=4.7 μF, R_L=150 Ω)

Figure 30. V_{BUS} Over-Voltage Protection Response (V_{BUS}=5 V→15 V, V_{IN}=5 V, EN=HIGH, V_{IN}_SEL=LOW, C_{OUT}=4.7 μF, R_L=150 Ω)

Operation and Application Information

The FPF3042 is an 18 V, 2.7 A-rated, Dual-Input Single-Output (DISO) N-channel MOSFET load switch with slew-rate-controlled and low on resistance. The input operating range is from 4 V to 12.4 V at V $_{\rm BUS}$ and at V $_{\rm IN}$. The internal circuitry is powered from the highest voltage source among V $_{\rm IN}$, V $_{\rm BUS}$, and EN.

Input Power-Source Selection

The input power source can be selected by $V_{\text{IN_SEL}}$ and DF_IN, respectively, depending on the EN state. When EN is HIGH, the input source is selected by $V_{\text{IN_SEL}}$ regardless of DF_IN. If $V_{\text{IN_SEL}}$ is LOW, V_{BUS} is selected. If $V_{\text{IN_SEL}}$ is HIGH, V_{IN} is selected.

Table 2. Input Power Selection by VIN SEL

EN	V _{IN} >V _{UVLO}	V _{BUS} >V _{UVLO}	V _{IN_SEL}	DF_IN	V _{OUT}
HIGH	Х	Х	LOW	X	V_{BUS}
HIGH	Х	Χ	HIGH	Х	VIN

When EN is LOW, the input source is selected by DF_IN and the number of valid input sources. If only one input source is valid (greater than $V_{\text{UVLO}(\text{MAX})}$), the source is selected automatically, regardless of DF_IN, to make charging path in case the battery is depleted. If both V_{BUS} and V_{IN} have valid input sources, the input source is selected by DF_IN. If DF_IN is LOW, V_{IN} is selected. If DF_IN is HIGH or floating, V_{BUS} is selected. DF_IN is biased HIGH with an internal 1 μA pull-up current source.

Table 3. Input Power Selection by DF IN

EN	$V_{IN} > V_{UVLO}$	$V_{\text{BUS}} \!\!>\!\! V_{\text{UVLO}}$	$V_{\text{IN_SEL}}$	DF_IN	V_{OUT}
LOW	YES	NO	HIGH	Χ	VIN
LOW	NO	YES	LOW	Х	V _{BUS}
LOW	YES	YES	LOW	Floating	V _{BUS}
LOW	YES	YES	HIGH	LOW	VIN
LOW	NO	NO	Χ	Χ	Floating

 V_{IN_SEL} can be the status output to indicate which input power source is used during EN is LOW. If V_{IN} is used, V_{IN_SEL} shows HIGH. If V_{BUS} is used, V_{IN_SEL} shows LOW. The voltage level of HIGH signal is 5.3 V if any one of V_{IN} , V_{BUS} , or EN is higher than 5.3 V. The signal

is highest voltage among V_{IN} , V_{BUS} , and EN if none of them is higher than 5.3 V.

EN Voltage for Control Logic Power Supply

Internal control logic is powered from the highest voltage among V_{IN} , V_{BUS} , and V_{EN} . If valid V_{IN} or V_{BUS} higher than UVLO is applied, ON/OFF control by EN should be accomplished with $V_{\text{IH}}/V_{\text{IL}}$. If EN powers the internal control block without valid V_{IN} and V_{BUS} , more than 2.5 V is required on the EN pin to operate properly.

Over-Voltage Protection (OVP)

The FPF3042 includes over-voltage protection at both V_{IN} and V_{BUS} . If V_{IN} or V_{BUS} is higher than 14 V (typical), the power switch is off until input voltage is lower than the over-voltage trip level by a hysteresis voltage of 0.5 V.

Reverse Power Supply for OTG

The bidirectional switch allows reverse power for On-The-Go (OTG) operation. Even if both V_{IN} and V_{BUS} are unavailable, reverse power can be supported if internal control circuitry is powered by EN.

Reverse-Current Blocking (RCB)

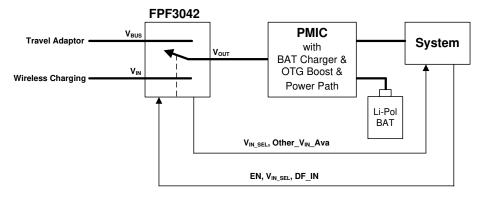
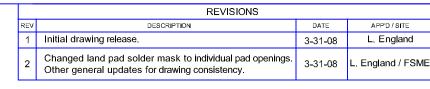
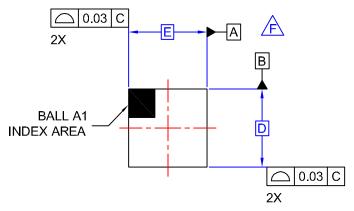
FPF3042 supports reverse-current blocking during EN LOW and an unselected channel.

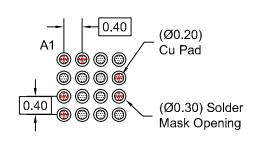
Thermal Shutdown

During thermal shutdown, the power switch is turned off if junction temperature exceeds 150°C to avoid damage.

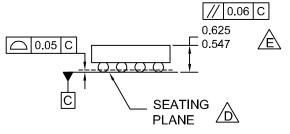
Wireless Charging System

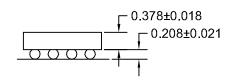
FPF3042 can be used as an input power selector supporting Travel Adaptor (TA) and Wireless Charging (WC) with a single-input-based battery charger or Power Management IC (PMIC), including a charging block as shown in Figure 31. The system can recognize an input power source change between 5 V TA and 5 V WC without detection circuitry because FPF3042 has a 100 ms transition delay. OTG Mode can be supported without an additional power path, such as a MOSFET.

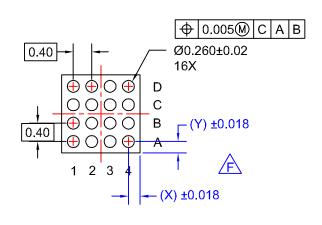

Figure 31.Input Power Selector for Wireless Charging System

Product Specific Package Information


D	E	X	Υ
1.96 mm ±0.03 mm	1.76 mm ±0.03 mm	0.28 mm	0.38 mm



TOP VIEW RECOMMENDED LAND PATTERN (NSMD PAD TYPE)



SIDE VIEWS

NOTES:

- A. NO JEDEC REGISTRATION APPLIES.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCE PER ASME Y14.5M, 1994.
- DATUM C IS DEFINED BY THE SPHERICAL CROWNS OF THE BALLS.
- PACKAGE NOMINAL HEIGHT IS 586 MICRONS ±39 MICRONS (547-625 MICRONS).
- F. FOR DIMENSIONS D, E, X, AND Y SEE PRODUCT DATASHEET.
 - G. DRAWING FILNAME: MKT-UC016AArev2.

BOTTOM VIEW

ON Semiconductor and III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.

Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative