

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Coiltronics FPV1006 Family

High current power inductors

Description

- Magnetically shielded
- Inductance range 85nH to 150nH
- Current range from 25 to 81 Amps
- 10.3 x 8.7mm footprint surface mount package in 6.4mm height
- Ferrite core material
- Halogen free, lead free, RoHS compliant

Applications

- Compatible with Picor® Cool-Power® ZVS Buck and Buck-Boost Regulator Families

Environmental Data

- Storage temperature range (component): -55°C to +125°C
- Operating temperature range: -55°C to +125°C (ambient plus self-temperature rise)
- Solder reflow temperature: J-STD-020D compliant

Picor® and Cool-Power® are trademarks of Vicor Corporation.

Product Specifications

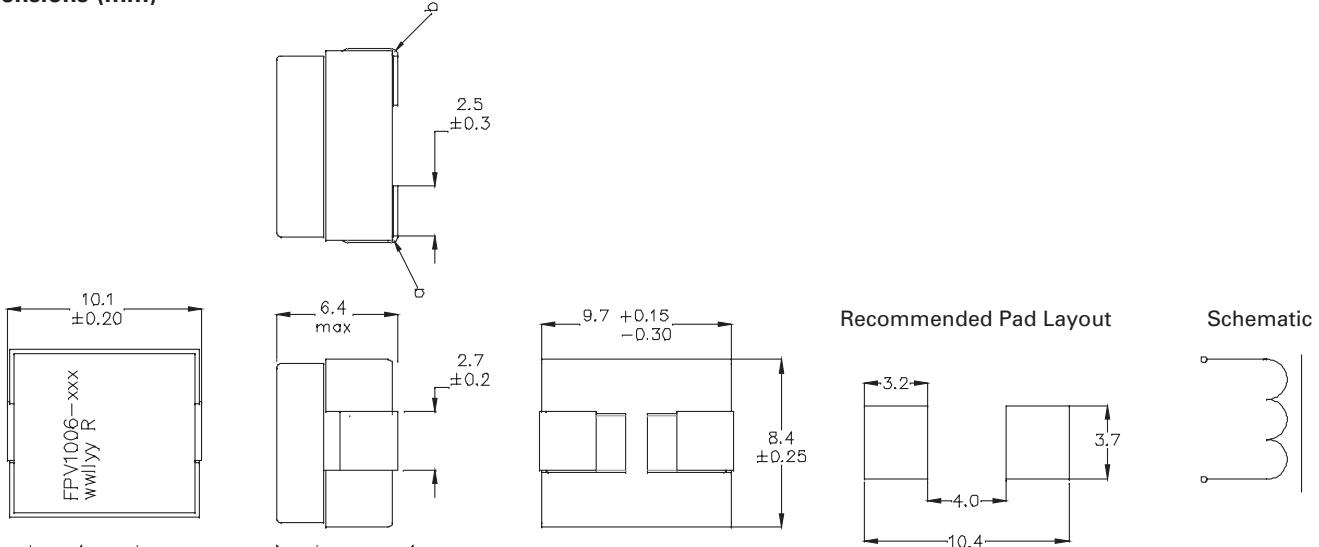
Part Number ⁴	OCL ¹ (nH) $\pm 10\%$	I _{rms} ² (amps)	I _{sat} ³ (amps)	DCR (m Ω) @ 20°C maximum
FPV1006-85-R	85	25	81	0.41
FPV1006-125-R	125	25	57	0.41
FPV1006-150-R	150	25	45	0.41

1. Open Circuit Inductance (OCL) Test Parameters: 100kHz, 0.1Vrms, 0.0Adc, 25°C

2. I_{rms}: DC current for an approximate temperature rise of 40°C without core loss. Derating is necessary for AC currents. PCB layout, trace thickness and width, air-flow, and proximity of other heat generating components will affect the temperature rise. It is recommended that the temperature of the part not exceed 125°C under worst case operating conditions verified in the end application.

3. I_{sat}: Peak current for approximately 5% rolloff @ +25°C

4. Part Number Definition: FPV1006-xxx-R


FPV1006 = Product code and size

xxx=Inductance value in nH,

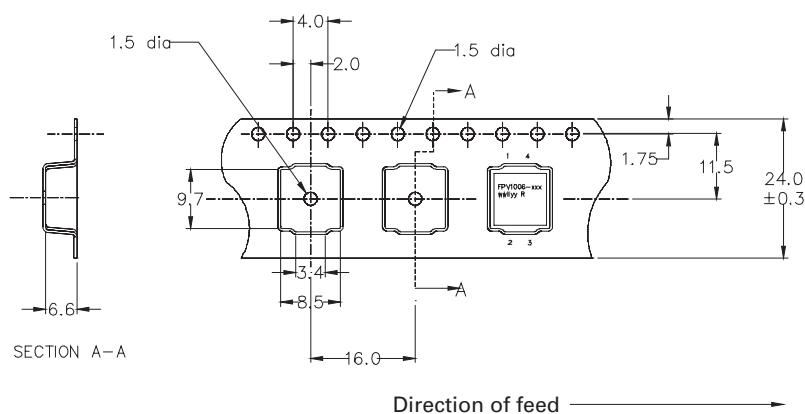
-R suffix = RoHS compliant

Note: Hipot: 250Vdc minimum for 2 seconds, conductor to core

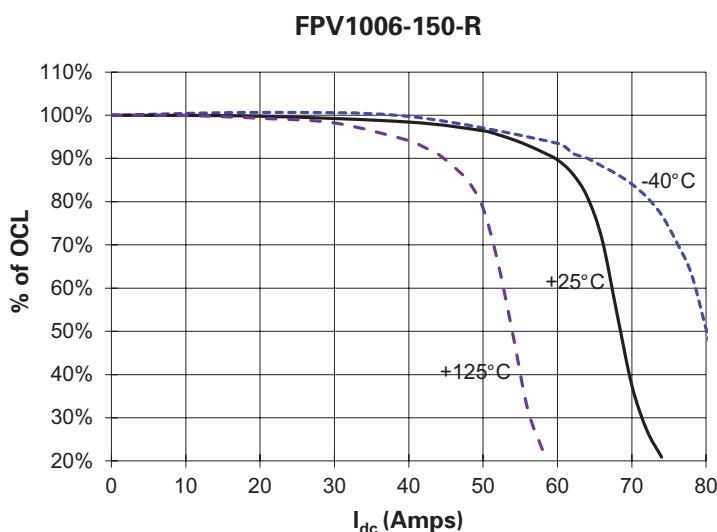
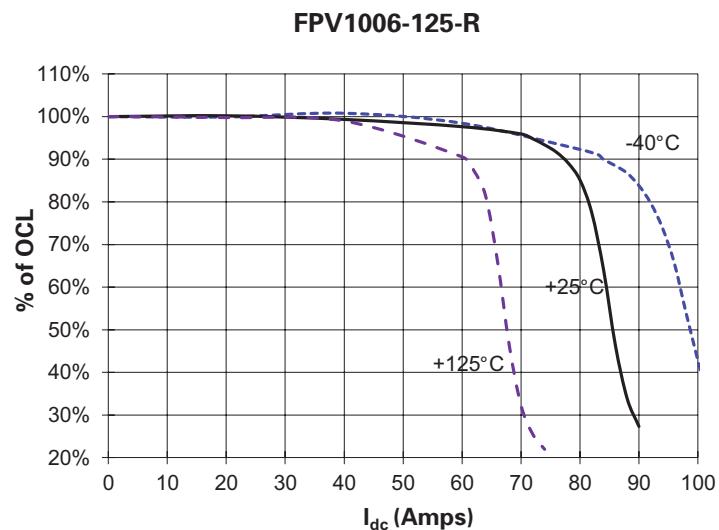
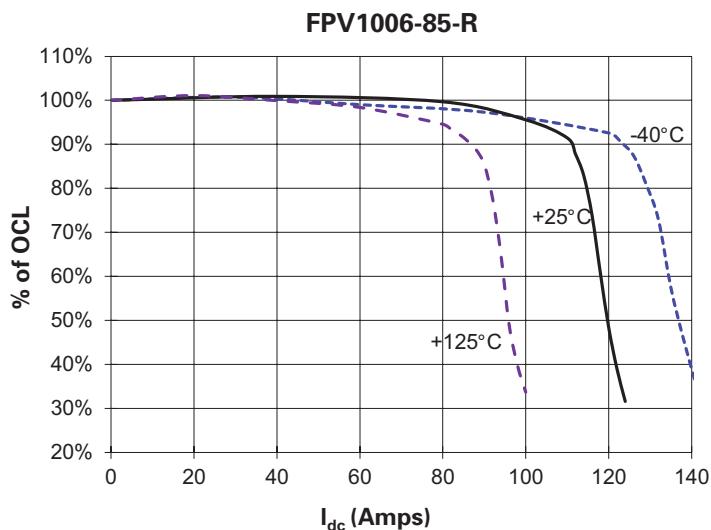
Dimensions (mm)

Part marking: FPV1006-xxx, xxx=inductance value in nH,
wwllyy = date code, R=revision level

Tolerances are ± 0.25 unless stated otherwise


Soldering surfaces to be coplanar within 0.102 millimeters

DCR measured from point "a" to point "b"




Do not route traces or vias underneath the inductor.

Packaging information (mm)

Supplied in tape and reel packaging, 620 parts per 13" diameter reel

Inductance characteristics

Solder reflow profile

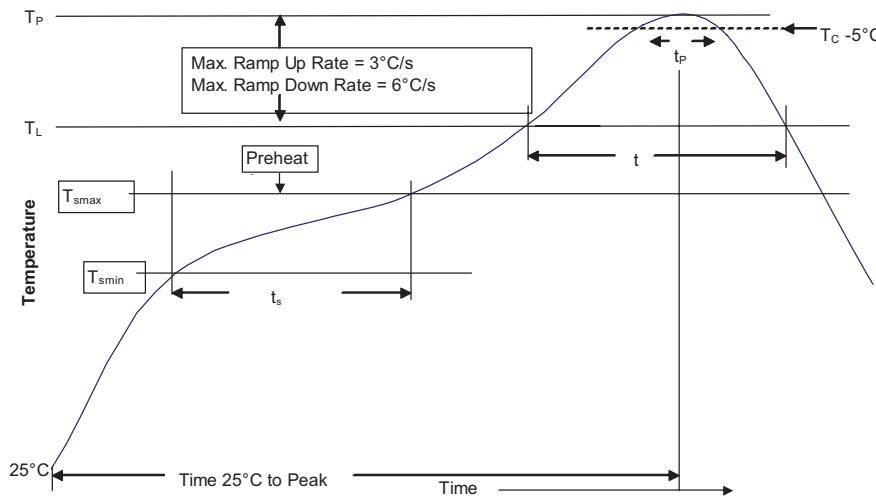


Table 1 - Standard SnPb Solder (T_c)

Package Thickness	Volume mm ³ <350	Volume mm ³ ≥350
<2.5mm)	235°C	220°C
≥2.5mm	220°C	220°C

Table 2 - Lead (Pb) Free Solder (T_c)

Package Thickness	Volume mm ³ <350	Volume mm ³ 350 - 2000	Volume mm ³ >2000
<1.6mm	260°C	260°C	260°C
1.6 - 2.5mm	260°C	250°C	245°C
>2.5mm	250°C	245°C	245°C

Reference JDEC J-STD-020D

Profile Feature	Standard SnPb Solder	Lead (Pb) Free Solder
Preheat and Soak	<ul style="list-style-type: none"> Temperature min. (T_{smin}) Temperature max. (T_{smax}) Time (T_{smin} to T_{smax}) / (t_s) 	100°C 150°C 60-120 Seconds 60-120 Seconds
Average ramp up rate T_{smax} to T_p	3°C/ Second Max.	3°C/ Second Max.
Liquidous temperature (T_L)	183°C	217°C
Time at liquidous (t_L)	60-150 Seconds	60-150 Seconds
Peak package body temperature (T_p)*	Table 1	Table 2
Time (t_p)** within 5 °C of the specified classification temperature (T_c)	20 Seconds**	30 Seconds**
Average ramp-down rate (T_p to T_{smax})	6°C/ Second Max.	6°C/ Second Max.
Time 25°C to Peak Temperature	6 Minutes Max.	8 Minutes Max.

* Tolerance for peak profile temperature (T_p) is defined as a supplier minimum and a user maximum.

** Tolerance for time at peak profile temperature (t_p) is defined as a supplier minimum and a user maximum.

Life Support Policy: Eaton does not authorize the use of any of its products for use in life support devices or systems without the express written approval of an officer of the Company. Life support systems are devices which support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

Eaton
Electronics Division
1000 Eaton Boulevard
Cleveland, OH 44122
United States
www.eaton.com/elx

© 2015 Eaton
All Rights Reserved
Printed in USA
Publication No. 10390-BU-SB15163
April 2015

Eaton is a registered trademark.

All other trademarks are property
of their respective owners.