imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

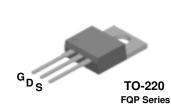
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

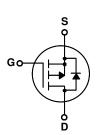
FAIRCHILD

SEMICONDUCTOR TM

FQP4P25 250V P-Channel MOSFET

General Description


These P-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology.


This advanced technology is especially tailored to minimize on-state resistance, provide superior switching performance, and withstand a high energy pulse in the avalanche and commutation modes. These devices are well suited for high efficiency switching DC/DC converters.

Features

- -4.0A, -250V, R_{DS(on)} = 2.1Ω @V_{GS} = -10 V
 Low gate charge (typical 10 nC)
 Low Crss (typical 10.3 pF)

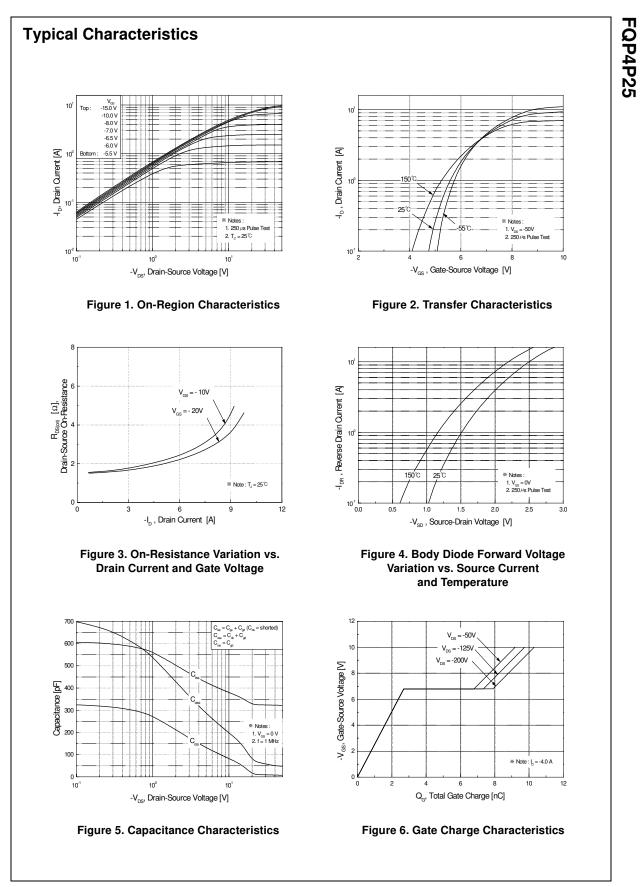
- Fast switching
- 100% avalanche tested
- Improved dv/dt capability

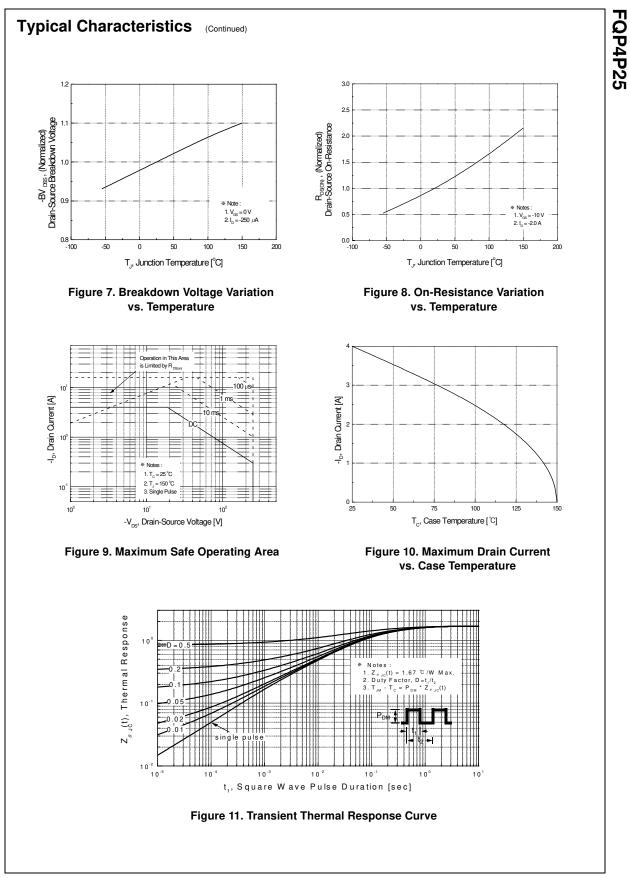
Absolute Maximum Ratings T_C = 25°C unless otherwise noted

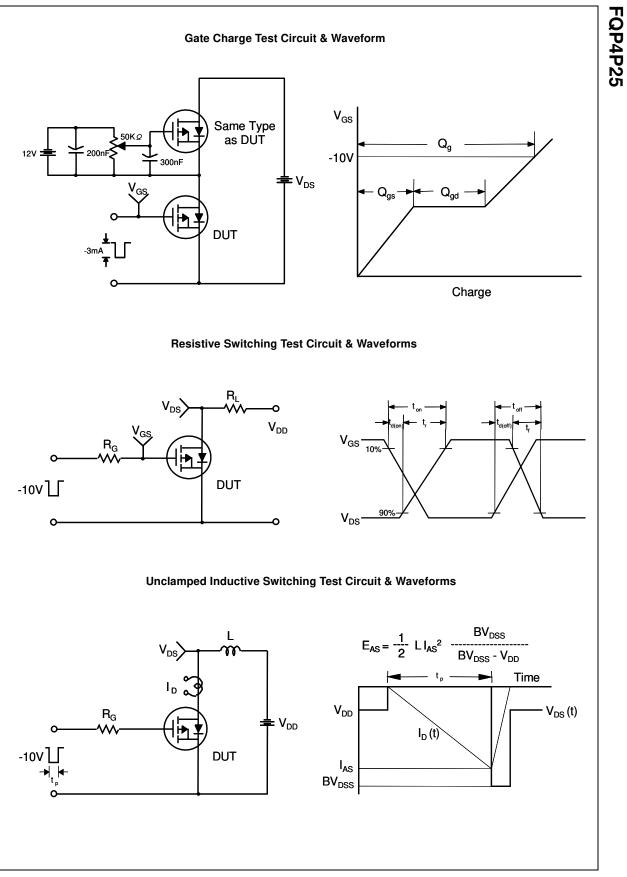
Symbol	Parameter		FQP4P25	Units	
V _{DSS}	Drain-Source Voltage		-250	V	
I _D	Drain Current - Continuous ($T_C = 25^{\circ}C$)		-4.0	Α	
	- Continuous (T _C = 100°C)		-2.53	Α	
I _{DM}	Drain Current - Pulsed	(Note 1)	-16	Α	
V _{GSS}	Gate-Source Voltage		± 30	V	
E _{AS}	Single Pulsed Avalanche Energy	(Note 2)	280	mJ	
I _{AR}	Avalanche Current	(Note 1)	-4.0	А	
E _{AR}	Repetitive Avalanche Energy	(Note 1)	7.5	mJ	
dv/dt	Peak Diode Recovery dv/dt	(Note 3)	-5.5	V/ns	
PD	Power Dissipation ($T_C = 25^{\circ}C$)		75	W	
	- Derate above 25°C		0.6	W/°C	
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	°C	
TL	Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds		300	°C	

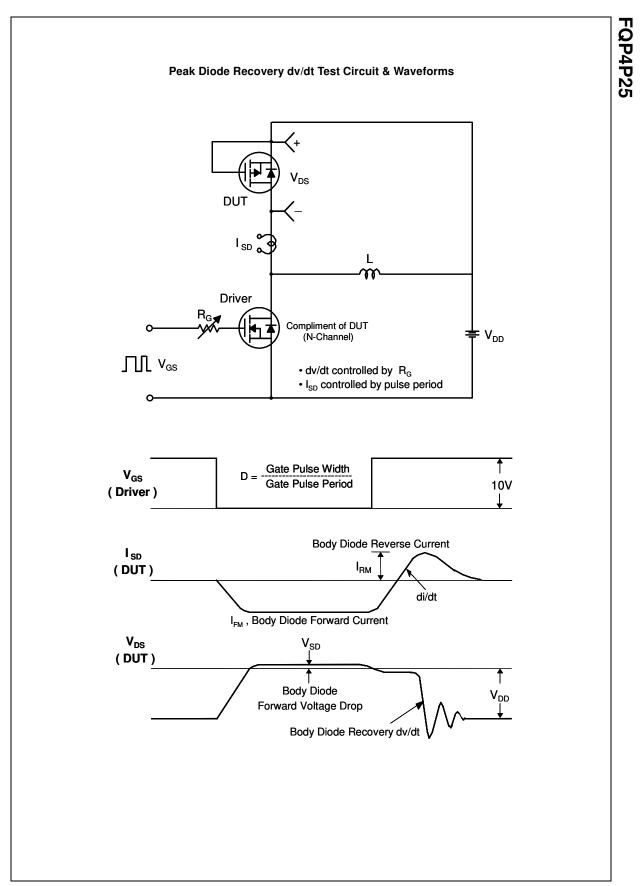
Thermal Characteristics

Symbol	Parameter	Тур	Max	Units	
$R_{ extsf{ heta}JC}$	Thermal Resistance, Junction-to-Case		1.67	°C/W	
$R_{\theta CS}$	Thermal Resistance, Case-to-Sink	0.5		°C/W	
R _{0JA} Thermal Resistance, Junction-to-Ambient			62.5	°C/W	


©2000 Fairchild Semiconductor International


December 2000


TM


Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Cha	aracteristics					
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 V, I_{D} = -250 \mu A$	-250			V
ΔBV _{DSS} / ΔT _J	Breakdown Voltage Temperature Coefficient	$I_D = -250 \ \mu\text{A}$, Referenced to 25°C		-0.21		V/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -250 \text{ V}, \text{ V}_{GS} = 0 \text{ V}$			-1	μA
		$V_{DS} = -200 \text{ V}, \text{ T}_{C} = 125^{\circ}\text{C}$			-10	μA
I _{GSSF}	Gate-Body Leakage Current, Forward	$V_{GS} = -30 \text{ V}, V_{DS} = 0 \text{ V}$			-100	nA
I _{GSSR}	Gate-Body Leakage Current, Reverse	$V_{GS} = 30 \text{ V}, \text{ V}_{DS} = 0 \text{ V}$			100	nA
On Cha	racteristics					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = -250 \ \mu A$	-3.0		-5.0	V
R _{DS(on)}	Static Drain-Source On-Resistance	V _{GS} = -10 V, I _D = -2.0 A		1.63	2.1	Ω
9 _{FS}	Forward Transconductance	$V_{DS} = -40 \text{ V}, I_D = -2.0 \text{ A}$ (Note 4)		2.3		S
C _{oss} C _{rss} Switchi	Output Capacitance Reverse Transfer Capacitance	V _{DS} = -25 V, V _{GS} = 0 V, f = 1.0 MHz		65 10	85 13	pF pF
	ing Characteristics			9.5	30	ne
t _{d(on)} t _r	Turn-On Rise Time	$V_{DD} = -125 \text{ V}, \text{ I}_{D} = -4.0 \text{ A},$		60	130	ns ns
t _{d(off)}	Turn-Off Delay Time	$R_{G} = 25 \Omega$		14	40	ns
t _f	Turn-Off Fall Time	(Note 4, 5)		27	65	ns
Q _g	Total Gate Charge	V _{DS} = -200 V, I _D = -4.0 A,		10.3	14	nC
Q _{gs}	Gate-Source Charge	$V_{\rm DS} = -200$ V, $T_{\rm D} = -4.0$ A, $V_{\rm GS} = -10$ V		2.7		nC
Q _{gd}	Gate-Drain Charge	(Note 4, 5)		5.2		nC
Drain-S	Source Diode Characteristics a Maximum Continuous Drain-Source Die				-4.0	A
I _{SM}	Maximum Pulsed Drain-Source Diode I	Forward Current			-16	Α
V _{SD}	Drain-Source Diode Forward Voltage	$V_{GS} = 0 V, I_{S} = -4.0 A$			-5.0	V
	Reverse Recovery Time	$V_{GS} = 0 V, I_S = -4.0 A,$		140		ns
t _{rr}					1	1

Pulse Test : Pulse Width ≤ 300µs, Duty cycle ≤ 2%
 Essentially independent of operating temperature

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx[™] Bottomless[™] CoolFET[™] CROSSVOLT[™] E²CMOS[™] FACT[™] FACT Quiet Series[™] FAST[®] FAST[®] FASTr[™] GTO[™] HiSeC[™] ISOPLANAR[™] MICROWIRE[™] POP[™] PowerTrench[®] QFET[™] QS[™] Quiet Series[™] SuperSOT[™]-3 SuperSOT[™]-6 SuperSOT™-8 SyncFET™ TinyLogic™ UHC™ VCX™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR INTERNATIONAL.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to

result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.