imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Freescale Semiconductor User's Guide Document Number: KTFRDM17C724UG Rev. 2.0, 9/2015

FRDM-17C724-EVB Evaluation Board

Figure 1. FRDM-17C724-EVB

© Freescale Semiconductor, Inc., 2015. All rights reserved.

Table of Contents

	Important Notice	
2	Getting Started.	4
3	Getting to Know the Hardware.	5
5	Installing the Software and Setting up the Hardware	11
6	Installing the Processor Expert Software	14
	Schematic	
	Silkscreen	
9	Bill of Materials	39
10	References	40
11	Revision History	41

1 Important Notice

Freescale provides the enclosed product(s) under the following conditions:

This evaluation kit is intended for use of ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY. It is provided as a sample IC pre-soldered to a printed circuit board to make it easier to access inputs, outputs, and supply terminals. This evaluation kit may be used with any development system or other source of I/O signals by simply connecting it to the host MCU or computer board via off-the-shelf cables. Final device in an application will be heavily dependent on proper printed circuit board layout and heat sinking design as well as attention to supply filtering, transient suppression, and I/O signal quality.

The goods provided may not be complete in terms of required design, marketing, and or manufacturing related protective considerations, including product safety measures typically found in the end product incorporating the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge. In order to minimize risks associated with the customers applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards. For any safety concerns, contact Freescale sales and technical support services.

Should this evaluation kit not meet the specifications indicated in the kit, it may be returned within 30 days from the date of delivery and will be replaced by a new kit.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical", must be validated for each customer application by customer's technical experts.

Freescale does not convey any license under its patent rights nor the rights of others. Freescale products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale product could create a situation where personal injury or death may occur.

Should the Buyer purchase or use Freescale products for any such unintended or unauthorized application, the Buyer shall indemnify and hold Freescale and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale was negligent regarding the design or manufacture of the part. Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2015

2 Getting Started

2.1 Kit Contents/Packing List

The FRDM-17C724-EVB contents include:

- Assembled and tested evaluation board/module in an anti-static bag
- Quick Start Guide, Analog Tools
- Warranty card

2.2 Jump Start

Freescale's analog product development boards help to easily evaluate Freescale products. These tools support analog mixed signal and power solutions including monolithic ICs using proven high-volume SMARTMOS mixed signal technology, and system-in-package devices utilizing power, SMARTMOS and MCU dies. Freescale products enable longer battery life, smaller form factor, component count reduction, ease of design, lower system cost and improved performance in powering state of the art systems.

- Go to www.freescale.com/FRDM-17C724-EVB
- Review your Tool Summary Page
- Look for

• Download documents, software, and other information

Once the files are downloaded, review the user guide JumpStart. The user guide includes setup instructions, BOM and schematics. Jump start bundles are available on each tool summary page with the most relevant and current information. The information includes everything needed for design.

2.3 Required Equipment and Software

To use this kit, you need:

- DC Power supply (2.7 V to 5.5 V, 0.1 A to 0.4 A, depending on stepper motor requirements)
- USB A to mini-B cable
- Oscilloscope (preferably 4-channel) with current probe(s)
- Digital multimeter
- FRDM-KL25Z Freedom Development Platform
- Typical loads (stepper motor, brushed DC motors, or power resistors)
- 3/16" blade screwdriver
- One 12-pin (PPTC062LFBN-RC), two 16-pin (PPTC082LFBN-RC), and one 20-pin (PPTC102LFBN-RC) female connector, by Sullins Connector Solutions, or equivalent soldered to FRDM-KL25Z

2.4 System Requirements

The kit requires the following:

USB-enabled PC with Windows[®] XP or higher

3 Getting to Know the Hardware

3.1 Board Overview

The FRDM-17C724-EVB evaluation board features the MPC17C724 dual H-Bridge IC, which features the ability to drive either a single two phase stepper motor or two brushed DC motors. The MPC17C724 incorporates internal control logic, a charge pump, gate drive, and high current, low R_{DS(on)} MOSFET output circuitry.

3.2 Board Features

The FRDM-17C724-EVB evaluation board is designed to easily evaluate and test the main component, the MPC17C724. The board's main features are as follows:

- Compatible with Freedom series evaluation boards such as FRDM-KL25Z
- Built in fuse for both part and load protection
- · Screw terminals to provide easy connection of power and loads
- Test points to allow probing of signals
- · Built in voltage regulator to supply logic level circuitry
- · LED to indicate status of Logic power supply of the evaluation board, as well as a general purpose indicator

3.3 FRDM-KL25Z Features

The FRDM-KL25Z board features are as follows:

- MKL25Z128VLK4 MCU 48 MHz, 128 KB Flash, 16 KB SRAM, USB OTG (FS), 80LQFP
- Capacitive touch slider, MMA8451Q accelerometer, tri-color LED
- · Flexible power supply options USB, coin cell battery, external source
- Easy access to MCU I/O
- · Battery-ready, power-measurement access points
- Form factor compatible with Arduino™ R3 pin layout
- New, OpenSDA debug interface
- Mass storage device flash programming interface (default) no tool installation required to evaluate demonstration applications
- P&E Debug interface provides run-control debugging and compatibility with IDE tools
- CMSIS-DAP interface: new ARM standard for embedded debug interface

Additional reference documents are available on freescale.com/FRDM-KL25Z.

3.4 Device Features

This evaluation board features the following Freescale product:

Table 1. Device Features

Device	Description	Features		
MPC17C724	The MPC17C724 is a dual H-Bridge motor driver IC intended for operating stepper motors	 Voltage range of operation from 2.7 V to 5.5 V Output Current of 0.4 A (DC) continuous, 0.8 A peak 1.0 Ω R_{DS(on)} H-Bridge MOSFET outputs 3.3/5.0 V TTL/CMOS compatible inputs PWM frequencies up to 200 kHz Undervoltage shutdown Cross conduction (shoot through) suppression 		

3.5 Board Description

This evaluation board consists mainly of an MPC17C724. The following sections describe the additional hardware used to support the dual H-Bridge driver.

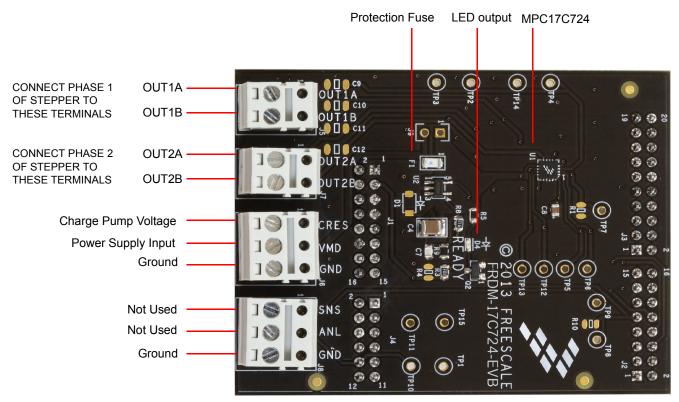


Figure 2. Board Description

Table 2. Board Description

Name	Description		
U1	MPC17C724 H-Bridge motor drive IC		
F1	Over current Protection Fuse		
D4	User defined LED output		
OUT1A	Output 1A Connect motor phase 1 lead to this terminal		
OUT1B	Output 1B Connect motor phase 1 lead to this terminal		
OUT2A	Output 2A Connect motor phase 2 lead to this terminal		
OUT2B	Output 2B Connect motor phase 2 lead to this terminal		
CRES Charge Pump Voltage			
VM	Power Supply Input		
GND	Ground Terminal		
SNS	Not used – connection to FRDM-KL25Z input		
ANL	Not used – connection to FRDM-KL25Z input		
GND Ground Terminal			

3.6 LED Display

An LED is provided as a visual output device for the FRDM-17C724-EVB evaluation board:

Table 3. Board Description

Name	Description		
LED1 (D4 board designator)	Illuminated with an output from the FRDM-KL25Z. Note the on board voltage regulator must be operating for the LED to operate		

3.7 Test Point Definitions

The following test-points provide access to signals on the FRDM-17C724-EVB. These signals are:

Table 4. Test Point Definitions

TP#	Signal Name	Description		
TP1	GND	Ground		
TP2	OUT2A	H-Bridge 2 Output A		
TP3	OUT2B	H-Bridge 2 Output B		
TP4	OUT1A	H-Bridge 1 Output A		
TP5	IN1A	H-Bridge 1 Input A		
TP6	IN1B	H-Bridge 1 Input B		
TP7	PSAVE	Standby/Enable pin		
TP8	READY	Logic signal from microcontroller. This signal causes the green LED to operate		
TP9	SNSIN	Not Used		
TP10	ANLIN	Not Used		
TP11	VDDPWRGOOD	Signal to the Microcontroller indicating the voltage regulator is operating (3.3 V)		
TP12	IN2A	H-Bridge 2 Input A		
TP13	IN2B	H-Bridge 2 Input B		
TP14	OUT1B	H-Bridge 1 Output B		
TP15	VDD	Logic Power Supply from the voltage regulator on the evaluation board		

3.8 Input Signal Definitions

The MPC17C724 IC has five input signals that are used to control certain outputs or functions inside the circuit. These signals are:

Table 5. Input Signal Definitions

Name	Description
IN1A	Controls OUT1A
IN1B	Controls OUT1B
IN2A	Controls OUT2A
IN2B	Controls OUT2B
PSAVE	Enables Outputs 1A, 1B and Outputs 2A, 2B

3.9 Output Signal Definitions

The MPC17C724 IC has four output signals used to drive a 2 phase stepper motor. These signals are:

Table 6. Output Signal Definitions

Name	Description
OUT1A	Output A of H-Bridge 1
OUT1B	Output B of H-Bridge 1
OUT2A	Output A of H-Bridge 2
OUT2B	Output B of H-Bridge 2

3.10 Screw Terminal Connections

There are four connectors on the FRDM-17C724-EVB which provide connections to the following signals:

Name	Signal	Signal Description		
IE	OUT1A	H-Bridge 1 output A		
J5	OUT1B	H-Bridge 1 output B		
	CRES	Charge pump voltage for H-Bridge gate drive		
J6	VM	Motor supply input (this is also the supply for the on board voltage regulator)		
	GND	Primary ground connection for the motor power supply		
J7	OUT2A	H-Bridge 2 output A		
	OUT2B	H-Bridge 2 output B		
	SNS	Not Used		
J8	ANL	Not Used		
	GND	Additional ground		

3.11 Jumper J9

The FRDM-17C724-EVB has provision (not populated) for a jumper to accommodate measuring the total current consumption. If the fuse is bypassed, use extreme care to make sure the maximum current for the MPC17C724 is not exceeded (0.4 A continuous, 0.8 A peak/transients).

4 FRDM-KL25Z Freedom Development Platform

The Freescale Freedom development platform is a set of software and hardware tools for evaluation and development. It is ideal for rapid prototyping of microcontroller-based applications. The Freescale Freedom KL25Z hardware, FRDM-KL25Z, is a simple, yet sophisticated design featuring a Kinetis L Series microcontroller, the industry's first microcontroller built on the ARM[®] Cortex[™]-M0+ core.

4.1 Connecting FRDM-KL25Z to the Board

The FRDM-17C724-EVB kit may be used with many of the Freedom platform evaluation boards featuring Kinetis processors. The FRDM-KL25Z evaluation board has been chosen specifically to work with the FRDM-17C724-EVB kit because of its low cost and features. The FRDM-KL25Z board makes use of the USB, built in LEDs, and I/O ports available with Freescale's Kinetis KL2x family of microcontrollers. The main functions provided by the FRDM-KL25Z are to allow control of a stepper motor using a PC computer over USB, and to drive the necessary inputs on the FRDM-17C724-EVB evaluation kit to operate the motor.

The FRDM-17C724-EVB is connected to the FRDM-KL25Z using four dual row headers. The connections are as follows:

FRDM-17	FRDM-17C724-EVB		KL25Z	Pin Hardware Name		Description
Header	Pin	Header	Pin	FRDM-17C724-EVB	FRDM-KL25Z	Description
J1	1	J9	1	RUNPWRGD	PTB8	Regulator voltage present
J1	2	J9	2	N/C	SDA_PTD5	No connection
J1	3	J9	3	GND	PTB9	System Ground
J1	4	J9	4	N/C	P3V3	No connection
J1	5	J9	5	GND	PTB10	System ground
J1	6	J9	6	N/C	RESET/PTA20	No connection
J1	7	J9	7	GND	PTB11	System ground
J1	8	J9	8	N/C	P3V3	No connection
J1	9	J9	9	N/C	PTE2	No Connection
J1	10	J9	10	N/C	P5V_USB	No connection
J1	11	J9	11	N/C	PTE3	No connection
J1	12	J9	12	GND	GND	System ground
J1	13	J9	13	N/C	PTE4	No connection
J1	14	J9	14	N/C	GND	No connection
J1	15	J9	15	N/C	PTE5	No connection
J1	16	J9	16	N/C	P5-9V_VIN	No connection
J2	1	J1	1	PSAVE	PTC7	Enable
J2	2	J1	2	N/C	PTA1	No connection
J2	3	J1	3	N/C	PTC0	No connection
J2	4	J1	4	N/C	PTD4	No connection
J2	5	J1	5	N/C	PTC3	No connection
J2	6	J1	6	IN1A	PTD4	Input 1A
J2	7	J1	7	N/C	PTC4	No connection
J2	8	J1	8	IN1B	PTA12	Input 1B
J2	9	J1	9	READY	PTC5	No connection green LED (from KL25Z)
J2	10	J1	10	IN2A	PTA4	Input 2A
J2	11	J1	11	SNSIN	PTC6	Not used

Table 8: FRDM-17C724-EVB to FRDM-KL25Z Connections

KTFRDM17C724UG, Rev. 2.0

FRDM-17C724-EVB		FRDM-KL25Z		Pin Hardware Name		Description
Header	Pin	Header	Pin	FRDM-17C724-EVB	FRDM-KL25Z	Description
J2	12	J1	12	IN2B	PTA5	Input 2B
J2	13	J1	13	N/C	PTC10	No connection
J2	14	J1	14	N/C	PTC8	No connection
J2	15	J1	15	N/C	PTC11	No connection
J2	16	J1	16	N/C	PTC9	No connection
J3	1	J2	1	N/C	PTC12	No connection
J3	2	J2	2	N/C	PTA13	No connection
J3	3	J2	3	N/C	PTC13	No connection
J3	4	J2	4	N/C	PTD5	No connection
J3	5	J2	5	N/C	PTC16	No connection
J3	6	J2	6	N/C	PTD0	No connection
J3	7	J2	7	N/C	PTC17	No connection
J3	8	J2	8	N/C	PTD2	No connection
J3	9	J2	9	N/C	PTA16	No connection
J3	10	J2	10	N/C	PTD3	No connection
J3	11	J2	11	N/C	PTA17	No connection
J3	12	J2	12	N/C	PTD1	No connection
J3	13	J2	13	N/C	PTE31	No connection
J3	14	J2	14	N/C	GND	No connection
J3	15	J2	15	N/C	N/C	No connection
J3	16	J2	16	N/C	VREFH	No connection
J3	17	J2	17	N/C	PTD6	No connection
J3	18	J2	18	N/C	PTE0	No connection
J3	19	J2	19	N/C	PTD7	No connection
J3	20	J2	20	N/C	PTE1	No connection
J4	1	J10	1	N/C	PTE20	No connection
J4	2	J10	2	N/C	PTB0	No connection
J4	3	J10	3	N/C	PTE21	No connection
J4	4	J10	4	N/C	PTB1	No connection
J4	5	J10	5	N/C	PTE22	No connection
J4	6	J10	6	N/C	PTB2	No connection
J4	7	J10	7	N/C	PTE23	No connection
J4	8	J10	8	N/C	PTB3	No connection
J4	9	J10	9	N/C	PTE29	No connection
J4	10	J10	10	ANLIN	PTC2	Not used
J4	11	J10	11	N/C	PTE30	No connection
J4	12	J10	12	N/C	PTC1	No connection

5 Installing the Software and Setting up the Hardware

5.1 Installing the Motor Control Graphical User Interface (GUI) on your Computer

The latest version of the Motor Control GUI is designed to run on any Windows 8, Windows 7, Vista, or XP-based operating system. To install the software, go to www.freescale.com/analogtools and select your kit. Click on that link to open the corresponding Tool Summary Page. Look for "Jump Start Your Design". Download to your computer desktop the Motor Control GUI software.

Run the installed program from the desktop. The Installation Wizard will guide you through the rest of the process.

To use the Motor Control GUI, go to the Windows Start menu, then Programs, then Motor Control GUI, and click on the Freescale icon. The Motor Control Graphic User Interface (GUI) will appear. The GUI is shown in Figure 3. The hex address numbers at the top are loaded with the vendor ID for Freescale (0x15A2), and the part ID (0x138). The left side panel displays these numbers only if the PC is communicating with the FRDM-KL25Z via the USB interface.

USB Connection Vendor ID:	Target:				
Part ID: Enable Target					
Directio	n	Step I	Node	Acceleration	/Deceleration
Reverse 🔘 🧕) Forward	① 1/2 step	1/4 step	Disabled	I 🔘 Enabled
Step Time				75 Step	s/second
-					

Figure 3. Motor Control GUI

5.2 Configuring the Hardware

Figure 4 shows the configuration diagram for FRDM-17C724-EVB.

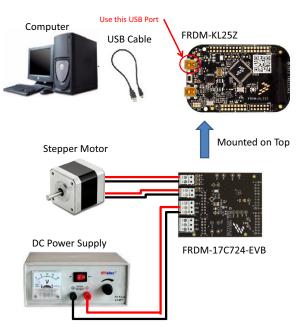


Figure 4. FRDM-17C724-EVB plus FRDM-KL25Z Board Setup

5.2.1 Step-by-step Instructions for Setting Up the Hardware Using Motor Control GUI

When using the FRDM-17C724-EVB make sure that the following operating parameters are followed or damage may occur.

- The maximum motor supply voltage (VM) cannot exceed 5.5 V, and must be at least 3.3 V
- The nominal operating current of the stepper motor cannot exceed 0.4 A (0.8 A peak)

In order to perform the demonstration example, first set up the evaluation board hardware and software as follows:

- Setup the FRDM-KL25Z to accept code from the mbed online compiler. mbed is a developer site for ARM based microcontrollers. The instructions are at mbed.org (https://mbed.org/handbook/mbed-FRDM-KL25Z-Upgrade) (you will need to switch to the other USB port on the FRDM-KL25Z, and back after you load the project).
- Go to the Freescale page on mbed.org and look for the repository named LVHB DC Motor Drive. (http://developer.mbed.org/teams/Freescale/code/LVHB-Stepper-Motor-Drive/) Save the compiled code on your local drive, and then drag and drop it onto the mbed drive (which is the FRDM-KL25Z). Move the USB connector back to the other USB port on the FRDM-KL25Z.
 Note: You may be asked to create a user before you can download the code.
 - Note: You may be asked to create a user before you can download the code.
- 3. Connect the FRDM-17C724-EVB to the FRDM-KL25Z. This is best accomplished by soldering the female connectors to the FRDM-KL25Z, and then connecting to the male pins provided on the FRDM-17C724-EVB.
- 4. Ready the computer, install the Stepper Motor Driver GUI Software (See Section 5.1).
- 5. Attach DC power supply (without turning on the power) to the VM and GND terminals.
- 6. Attach one set of coils of the stepper motor to the OUT 1A and OUT 1B output terminals. Attach the other phase coil of the stepper motor to terminals OUT2A and OUT2B. Launch the **Stepper Motor Driver GUI Software**.
- Make sure the GUI recognizes the FRDM-KL25Z. This is determined by seeing the hex Vendor ID (0x15A2), and Part ID (0x138) under USB connection in the upper left hand corner of the GUI. If the GUI does not recognize the FRDM-KL25Z, you need to disconnect and reconnect the USB cable to the FRDM-KL25Z.
- 8. Turn on the DC power supply.

- 9. Click on the Enable Target checkbox on the GUI. The demo is now ready to run.
- 10. Click the **Run** button to run the motor. Notice that some options of the GUI are disabled while the motor is running. To make changes, click the **Stop** button on the GUI, make the desired changes, and then click **Run** on the GUI to continue.
- 11. When finished, click **Enable Target** button on the GUI, and then **Quit**. Turn off DC power supply. Remove USB cable.

6 Installing the Processor Expert Software

6.1 Installing CodeWarrior on your Computer

This procedure explains how to obtain and install the latest version of CodeWarrior (version 10.6 in this guide).

NOTE

The sample software in this kit requires CodeWarrior 10.6 or newer. The component and some examples in the component package are intended for Kinetis Design Studio 3.0.0. If you have CodeWarrior 10.6 and Kinetis Design Studio 3.0.0 already installed on your system, skip this section.

- 1. Obtain the latest CodeWarrior installer file from the Freescale CodeWarrior website here: http://www.freescale.com/webapp/sps/site/homepage.jsp?code=CW_HOME&tid=vanCODEWARRIOR.
- 2. Run the executable file and follow the instructions.
- 3. In the Choose Components window, select the Kinetis component and click on Next to complete the installation.

ŗ	CodeWarrior Development Studio for Microcontrollers v10.6 Setup			
	Choose Components Choose which features of CodeWarrior Development Studio for Microcontrollers v10.6 you want to install.			
	Check the components you want to install and uncheck the components you don't want to install. Click Next to continue.			
Check Kinetis	Select components to install: ColdFire/Sensors DSC Kinetis			
	Qorivva S12Z S08/RS08			
	Space required: 1.4GB Description Position your mouse over a component to see its description.			
	Freescale Semiconductor, Inc			

Figure 5. Select components GUI

6.2 Downloading the LVHBridge Component and Example Projects

The examples used in this section are based on a pre-configured CodeWarrior project. You must first download the project and its associated components:

- 1. Go to the Freescale website www.freescale.com/LVHBRIDGE-PEXPERT
- 2. Download example projects and H-Bridge component zip file.
- 3. Unzip the downloaded file and check that the folder contains the files listed in Table 10.

Table 9: LVHBridge Example Project and Components

Folder Name	Folder Contents
CodeWarrior_Examples	Example project folder for CodeWarrior.

KTFRDM17C724UG, Rev. 2.0

Table 9: LVHBridge Example Project and Components

Folder Name	Folder Contents
LVH_KL25Z_brush_MC34933	Example project for DC brush motor control using FRDM-34933EP-EVB H-Bridge board and FRDM-KL25Z MCU board
LVH_KL25Z_brush_MPC17510	Example project for DC brush motor control using FRDM-17510EJ-EVB H-Bridge board and FRDM-KL25Z MCU board
LVH_KL25Z_stepper	Example project intended to control stepper motor using FRDM-34933EP-EVB H-Bridge board and FRDM-KL25Z MCU board
LVH_KL25Z_stepper_ramp	Example project intended to control stepper motor using FRDM-34933EP-EVB H-Bridge board and FRDM-KL25Z MCU board. Acceleration ramp is enabled
Component	Processor Expert component folder
KDS_Examples	Example project folder for Kinetis Design Studio 3.0.0 or newer.
LVH_K20D50M_brush_MC34933	Example project for DC brush motor control using FRDM-34933EP-EVB H-Bridge board and FRDM-K20D50M MCU board
LVH_K20D50M_brush_MPC17510	Example project for DC brush motor control using FRDM-17510EJ-EVB H-Bridge board and FRDM- K20D50M MCU board
LVH_K20D50M_stepper_bitIO	Example project intended to control stepper motor using FRDM-34933EP-EVB H-Bridge board and FRDM- K20D50M MCU board
LVH_K20D50M_stepper_ramp_bitIO	Example project intended to control stepper motor using FRDM-34933EP-EVB H-Bridge board and FRDM- K20D50M MCU board. Acceleration ramp is enabled
LVH_KL25Z_brush_MC34933	Example project for DC brush motor control using FRDM-34933EP-EVB H-Bridge board and FRDM-KL25Z MCU board
LVH_KL25Z_brush_MPC17510	Example project for DC brush motor control using FRDM-17510EJ-EVB H-Bridge board and FRDM-KL25Z MCU board
LVH_KL25Z_brush_FreeMASTER	Example project intended to control DC brush motor using FreeMASTER tool. Latest Freemaster installation package: www.freescale.com/freemaster
LVH_KL25Z_step_FreeMASTER	Example project intended to control stepper motor using FreeMASTER tool
LVH_KL25Z_stepper	Example project intended to control stepper motor using FRDM-34933EP-EVB H-Bridge board and FRDM-KL25Z MCU board
LVH_KL25Z_stepper_ramp	Example project intended to control stepper motor using MC34933 H-Bridge freedom board and FRDM-KL25Z MCU board. Acceleration ramp is enabled
LVH_KL26Z_stepper	Example project intended to control stepper motor using FRDM-34933EP-EVB H-Bridge board and FRDM-KL26Z MCU board
LVH_KL26Z_stepper_iar	Example project intended to control stepper motor using FRDM-34933EP-EVB H-Bridge board and FRDM-KL26Z MCU board. IAR compiler is used instead of GNU C compiler

6.2.1 Import the LVHBridge Component into Processor Expert Library

- 1. Launch CodeWarrior by clicking on the CodeWarrior icon (located on your desktop or in Program Files -> Freescale Codewarrior folder.) When the CodeWarrior IDE opens, go to the menu bar and click **Processor Expert** -> **Import Component(s)**.
- 2. In the pop-up window, locate the component file (.PEupd) in the example project folder LVHBridge_PEx_SW\Component. Select LVHBridge_b1508.PEupd and ChannelAllocator_b1508.PEupd files then click Open (see Figure 6).

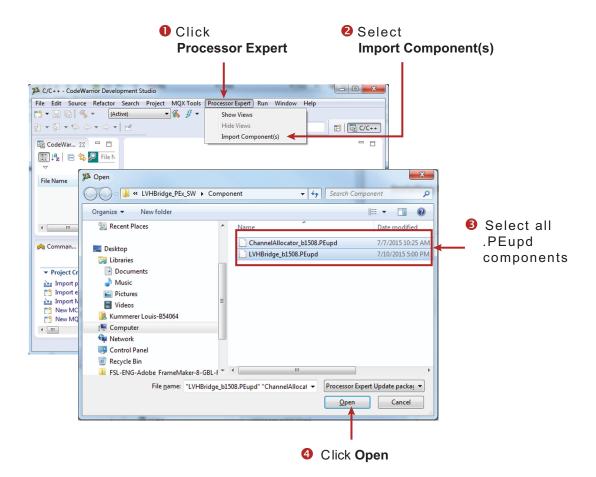


Figure 6. Import LVHBridge component

3. If the import is successful, the LVHBridge component appears in Components Library -> SW -> User Component (see Figure 7). Note that the component **ChannelAllocator** is not visible, because it is not designed to be users accessible.

📎 Component Inspector -	- Cpu 💊 Components Library 🛛
Categories Alphabetical	Assistant Processors
Component	Component Level
 Board Support CPU External Device 	1
D Device CPU Internal Periph	r
👂 🗁 Logical Device Driv	٨
Derating Systems	
🔺 🗁 Software	
🔺 🗁 User Componer	r
👽 LVHBridge	High
D 🗁 SW	

Figure 7. LVHBridge component location after CodeWarrior import

The LVHBridge component is ready to use.

6.2.2 Import an Example Project into CodeWarrior

The following steps show how to import an example from the downloaded zip file into CodeWarrior.

- 1. In the CodeWarrior menu bar, click File -> Import... In the pop-up window, select General -> Existing Projects into Workspace and click Next.
- 2. Locate the example in folder: LVHBridge_PEx_SW\CodeWarrior_Examples (see Figure 8, which shows LVH_KL25Z_brush_MC34933 as the imported project). Then click **Finish**.

The project is now in the CodeWarrior workspace where you can build and run it.

🏴 Import		Browse For Folder
Import Projects Select a directory to search for existing Eclipse projects.		Select root directory of the projects to import
Select root directory: Select archive file: Projects:	Browse	CodeWarrior_Examples
	Select All	Eolder: LVH_KL25Z_brush_MC34933
VCopy projects into workspace Working sets		
Working sets:	v Sglect	
(?) < Back Next > Eini	ish Cancel	

Figure 8. Example Project import

6.3 Create a New Project with Processor Expert and LVHBridge Component

If you choose not to use the example project, the following instructions describe how to create and setup a new project that uses the LVHBridge component. If you do not have the LVHBridge component in the Processor Expert Library, please follow steps in Section 6.2.1.

1. Create and name an MCU Bareboard project (see Figure 9).

reate an	MCU Bareboard Project
Choose th	e location for the new project
Project na	me: LVH_example
🔽 Use <u>d</u>	efault location
Location:	C:\Users\b52384\workspace cw lvh\LVH exampl Browse

Figure 9. Create an MCU Bare-board Project

2. Choose the MCU class to be used in the freedom MCU board (MKL25Z128 in this example). Then select the connections to be used (see Figure 10).

New Bareboard Project	New Bareboard Project
Devices	Connections
Select the derivative or board you would like to use	Choose the connection to use for this project
Device or board to be used:	
type filter text	Connection to be used:
Kinetis L Series KL0x Family KL1x Family KL2x Family KL2x Family KL2x C48 MHz) Family KL25Z (48 MHz) Family MKL25Z22 MKL25Z64 MKL25Z128 KL26Z (48 MHz) Family	P&E USB MultiLink Universal [FX] / USB MultiLink P&E Cyclone P&E TraceLink Open Source JTAG OpenSDA Segger J-Link / J-Trace / SWO (SWD based)
Project Type / Output: Application Library	Connect to OpenSDA.
Creates project for MKL25Z128 (48 Mhz) derivative	-
(?) < <u>Back</u> Next Einish Cancel	Image: Section of the section of t

3. Select the Processor Expert option, and then click Finish (see Figure 11).

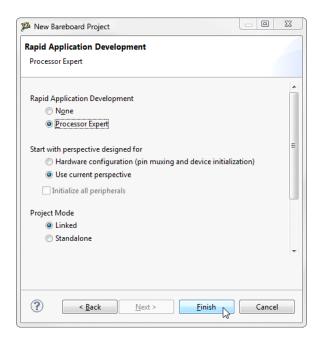


Figure 11. Select the Processor Expert option

6.3.1 Add LVHBridge Component into the Project

1. Find LVHBridge in the Components Library and add it into your project (see Figure 12).

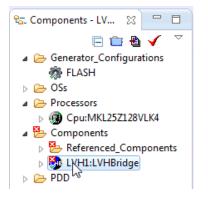

CodeWarrior Proje Image: CodeWarrior Proje Image: CodeWarrior Proje Image: CodeWarrior Proje <td< th=""><th>S *Component Inspector - LVH1 Categories Alphabetical Assistant Pr</th><th>Components Library 🛛</th><th>2</th><th></th><th></th></td<>	S *Component Inspector - LVH1 Categories Alphabetical Assistant Pr	Components Library 🛛	2		
File Name	Component	Component Level			
LVH_comp_test LVH_CCBrushed Solution FLASH Generated_Code ProcessorExpert.pe () () () () () () () () () ()	 Board Support CPU External Devices CPU Internal Peripherals CPU Internal Peripherals Coperating Systems Software User Components 32VeXtremeSwitch UVHBridge SW 	High High			
Generator_Configurations FLASH	Filter on for MKL25Z128VLK4 (LVH_Examp	ple)			
	Problems 🕸 📮 Console 🔋 Mem 13 errors, 0 warnings, 0 others Description	ory 💣 Software Analysis		▽ □	
Esperanced_Components Sourcester Structure Sourcester Structure Esperancester Structure Esperancester Structure Esperancester Structure Sourcester Structure Source	 Berrors (13 items) 				

Figure 12. Add the LVHBridge component to the project

2. Double click LVHBridge component in the **Components** window (see Figure 13) to show the configuration in the **Component Inspector** view.

KTFRDM17C724UG, Rev. 2.0

Figure 13. Select the component

Properties Methods Events		
Name	Value	Details
Component Name	LVH1	
H-Bridge Model	MPC17510	
ActiveMode	yes	
Enable Pins	Enabled	
Pin for EN	PTE0/UART1_TX/RTC_CLKOUT/C	
Pin for GIN	PTE2/SPI1_SCK	
Motor Control	Brushed	
Timer Settings	Enabled	
Primary Timer Component	TU1	
🝸 Primary Timer Device	LPTMR0_CNR	Unsupported counter device LPTMR0_CNR, plea
Secondary Timer	Disabled	
🕢 🍸 H-Bridge 1 MCU Interface		
DC brush		
a 🍸 Control Mode	Speed Control	
PWM Frequency		Unassigned timing
Direction Control	Bidirectional	
Init. Direction	Forward	
Input Control Pins	Two PWM Pins	
🍸 Pin for IN1	PTE4/SPII_PCS0	Selected peripheral "PTE4/SPI1_PCS0" does not r
🝸 Pin for IN2	PTE5	Selected peripheral "PTE5" does not match HW
Auto Initialization	yes	

Figure 14. Component Inspector view

6.3.2 General Settings of LVHBridge Component

Component settings in the Component Inspector view have a tree structure. H-Bridge Model is on top of the tree.

ActiveMode defines the H-Bridge device operational mode (normal or power-conserving sleep mode), which is controlled by the enabling pin. Selection of the enabling pin is in the **Enable Pins** group. For more information, see your H-Bridge model's data sheet. The mode can be changed later using the C code method **SetMode**.

The **Motor Control** group involves timer settings, H-Bridge device and motor control settings. The **Timer Settings** group contains the **Primary Timer Component** property (the name of a linked **TimerUnit_LDD** component) and the name of the hardware timer being used (defined in the **Primary Timer Device** property). **Secondary Timer** encompasses the properties of an additional timer.

Note that the **Secondary Timer Component** property must use a different **TimerUnit_LDD** component than the **Primary Timer Component** property. The purpose of the primary and secondary timers is to allow the input control pins of an H-Bridge device to be connected to different timers (this applies for some freedom H-Bridge boards and freedom MCUs). But these timers must be synchronized to control a stepper motor. So the primary timer is designed to be the source for the global time base and the secondary timer is synchronized with the primary timer. Please see your MCU's data sheet to find out which timer provides the global time base (GTB) and set the **Primary Timer Device** property accordingly. An example of a timer selection using the FRDM-KL25Z MCU is shown in Figure 15. If you are using a single timer, set the **Secondary Timer Component** to **Disabled**.

Timer Settings	Enabled	
Primary Timer Component	TU1	
Primary Timer Device	TPM1_CNT	TPM1_CNT
▲ Secondary Timer	Enabled	
Secondary Timer Component	TU2	
Secondary Timer Device	TPM0_CNT	TPM0_CNT

Figure 15. Selection of a FRDM-KL25Z MCU Primary and a Secondary Timer Device

H-Bridge 1 MCU Interface and H-Bridge 2 MCU Interface allow you to set H-Bridge control function. The H-Bridge 2 MCU Interface is shown only for dual H-Bridge models (for example MC34933). The DC Brush group is described in Section 6.3.3. The **Input Control Pins** allow you to select the H-Bridge input control pins that utilize timer channels or GPIO pins.

▲ H-Bridge 1 MCU Interface		
⊿ DC brush		
	Speed Control	
PWM Frequency	10 kHz	10.001 kHz
Direction Control	Bidirectional	
Init. Direction	Forward	
	Two PWM Pins	
Pin for IN1A	PTD4/LLWU_P14/SPI1_PCS0/UART	
Pin for IN1B	PTA12/TPM1_CH0	
H-Bridge 2 MCU Interface	Enabled	
⊿ DC brush		
Control Mode	State Control	
Init. Direction	Forward	
	Two GPIO Pins	
Pin for IN2A	TSI0_CH5/PTA4/I2C1_SDA/TPM0	
Pin for IN2B	PTA5/USB_CLKIN/TPM0_CH2	
Auto Initialization	yes	

Figure 16. LVHBridge component — General settings

6.3.3 Setting up a Project to Control a DC Brushed Motor

1. Select the H-Bridge model you want to configure and set the Motor Control property to Brushed.

roperties Methods Events			
Name	Value	Details	
Component Name	LVH1		
▲ H-Bridge Model	MPC17C724		
ActiveMode	yes		
⊿ Enable Pins	Enabled		
Pin for PSAVE	CMP0_IN1/PTC7/SPI0_MISO/SPI0		
PSAVE Linked	Kinetis/BitIO LDD		
Motor Control	Brushed		
⊿ Timer Settings	Enabled		
Primary Timer Component	TU1		
Primary Timer Device	TPM1_CNT	TPM1_CNT	
⊿ Secondary Timer	Enabled		
Secondary Timer Compo	ne TU2		
Secondary Timer Device	TPM0_CNT	TPM0_CNT	
▲ H-Bridge 1 MCU Interface			
⊿ DC brush			
Control Mode	Speed Control		
PWM Frequency	10 kHz	10.001 kHz	
Direction Control	Bidirectional		
Init. Direction	Forward		
Input Control Pins	Two PWM Pins		
Pin for IN1A	PTD4/LLWU_P14/SPI1_PCS0/UART		
Pin for IN1B	PTA12/TPM1_CH0		
▲ H-Bridge 2 MCU Interface	Enabled		
DC brush			
Control Mode	State Control		
Init. Direction	Forward		
Input Control Pins	Two GPIO Pins		
Pin for IN2A	TSI0_CH5/PTA4/I2C1_SDA/TPM0		
Pin for IN2B	PTA5/USB_CLKIN/TPM0_CH2		

Figure 17. Setup of the component to control a brush motor

- 2. Set the Control Mode property. There are two ways to control the DC brushed motor:
 - a) Speed Control motor speed is controlled by your settings. The TimerUnit_LDD component is used to generate the PWM signal. The PWM Frequency property is visible in this mode only. If you set the Speed Control mode on both interfaces (i.e. Interface 1 and Interface 2), the PWM Frequency property on Interface 2 will be set automatically to the same value as Interface 1 (because Interface 2 uses the same timer.)
 - b) State Control motor is controlled by GPIO pins (BitIO_LDD components). This means you can switch the motor on or off without speed adjustments. The advantage of this mode is that you do not need timer channels. If you set State Control on both interfaces or you have only a single H-Bridge model (one interface) with State Control, the TimerUnit_LDD component is not required anymore by the LVHBridge component and you can remove it from the project.
- 3. Set the PWM Frequency.
- 4. Set the Direction Control property. The Direction Control property determines what direction the motor is allowed to move in. Setting the property to Forward restricts the motor's movement to the forward direction only. Setting the property to Reverse restricts movement to the reverse direction only. A Bidirectional setting allows the motor to move in either direction. The Bidirectional mode requires two timer channels. Forward or Reverse requires only one timer channel and one GPIO port. This setting is available only when Speed Control mode is set in the Control Mode property.

6.3.4 Setting up a Project to Control a Stepper Motor

Select the dual H-Bridge model you want to configure and set **Stepper** in the **Motor Control** property. Note that the dual H-Bridge model is required, because a two phase bipolar stepper motor has four inputs.

roperties Methods Events				
Name	Value	Details		
Component Name	LVH1			
▲ H-Bridge Model	MPC17C724			
ActiveMode	yes			
⊿ Enable Pins	Enabled			
Pin for PSAVE	CMP0 IN1/PTC7/SPI0 MISO/SPI0			
	Stepper			
▲ Timer Settings	Enabled			
Primary Timer Component	TU1			
Primary Timer Device	TPM1_CNT	TPM1_CNT		
	Enabled			
Secondary Timer Component	TU2			
Secondary Timer Device	TPM0_CNT	TPM0_CNT		
Stepper Motor				
Output Control	PWM			
Motor Control Mode	Full-step and Micro-step			
Full-step Configuration				
Speed	100 D			
Acceleration	400 D			
Micro-step Configuration				
PWM Frequency	20 kHz	20.011 kHz		
Micro-steps per Step	8 Micro-steps			
Speed	400 D			
Acceleration	400 D			
H-Bridge 1 MCU Interface				
⊿ Input Control Pins	Two PWM Pins			
Pin for IN1A	PTD4/LLWU_P14/SPI1_PCS0/UART			
Pin for IN1B	PTA12/TPM1_CH0			
H-Bridge 2 MCU Interface	Enabled			
▲ Input Control Pins	Two PWM Pins			
Pin for IN2A	TSI0_CH5/PTA4/I2C1_SDA/TPM0			
Pin for IN2B	PTA5/USB_CLKIN/TPM0_CH2			
Auto Initialization	yes			

Figure 18. Component settings to control a stepper motor

In the Stepper Motor group, set the properties that apply to your environment.

- The Output Control property defines the control method.
 - a) With **PWM** selected the component utilizes four channels of a timer to control the stepper motor. Signal is generated in hardware and micro-step mode is also available.
 - b) In GPIO mode, GPIO pins are used instead of timer channels and only full-step mode is available (no micro-step mode).
- Manual Timer setting property is only visible when you switch the visibility of the component properties to Advanced (see later). It is designed to change the Counter frequency of the linked TimerUnit_LDD component. By default the Counter frequency is set automatically by LVHBridge component. In some cases the frequency value does not have to be set appropriately (user wants to set a different value or there an error has occurred). For more information see Section 6.3.5.
- Motor Control Mode allows you to select the Step Mode. Selecting Full-step and Micro-step mode allows you to switch between full-stepping and micro-stepping in C code.
 - a) Full-step Configuration contains speed and acceleration settings. Code for the acceleration and deceleration ramp is generated when the Acceleration property is set to a value greater than zero. Note that acceleration is always the same as deceleration. Figure 19 shows an example of an acceleration ramp. The acceleration setting is 400, as shown in Figure 18.
 - Desired motor speed is set to 100 full-steps per second. This value is defined by the **Speed** property in Processor Expert GUI and can be changed in C code.
 - Acceleration and deceleration is set to 400 full-steps per second². This value is defined by the Acceleration
 property. Note that the motor reaches the speed in 0.25 second (desired_speed / acceleration = 100 / 400 = 0.25).

KTFRDM17C724UG, Rev. 2.0

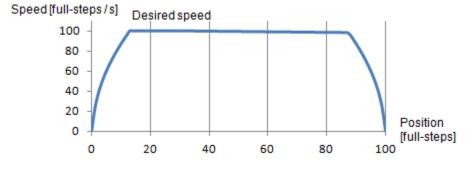


Figure 19. Acceleration and deceleration ramp

b) Micro-step Configuration settings are similar to those of the Full-step Configuration. PWM Frequency is the frequency of the micro-step PWM signal. Micro-step per Step is the number of micro-steps per one full-step.

6.3.5 Stepper Motor Speed

The LVHBridge component defines the stepper motor's minimum and maximum speed. These limit values are used by the component methods. Minimum speed in full-step and micro-step modes is one step per second. Maximum speed is 5000 steps per second. There is a specific case when minimum full-step speed is affected by timer input frequency. In this case, the **Primary Timer Device** property must use FTM timer values (FTM0_CNT, or FTM1_CNT, etc.). The **Secondary Timer** property must be set to **Disabled**. The Stepper Motor **Output Control** property must be set to **PWM**. Figure 20 illustrates this configuration.

📎 Component In 🛛	🚫 Components L	.c main.c	» ₂
			Basic Advanced
Properties Methods	Events		
Name			Value
Component Nan	ne		LVH1
▲ H-Bridge Mode	I		MC34933
ActiveMode			yes
Enable Pins			Disabled
⊿ Motor Contr	ol		Stepper
⊿ Timer Se	ttings		Enabled
Prima	ry Timer Component		TU4
Prima	ry Timer Device		FTM0_CNT
Second	ndary Timer		Disabled
⊿ Stepper	Motor		
Outpu	ut Control		PWM

Figure 20. Stepper Mode configuration that affects minimum Full-stepping speed

Possible values for the timer input frequency (**Counter frequency** property in **TimerUnit_LDD**) are in **Table 10**. Input frequency values depend on LVHBridge component settings. Note that two frequency values are needed in "Full-step and Micro-step mode" in one case (LVHBridge component switches in runtime between these two values).

Mode	LVHBridge component properties			Primary Timer Input Frequency			Secondary Timer	
Description	Timer Device	Secondary Timer	Output Control	Motor Control Mode	Values	Min	Мах	Input Frequency
Full-step mode	TPM	Don't care	PWM	Full-step	1	131 kHz	1 MHz	Any value (user selection)
Full-step and Micro-step mode	TPM	Don't care	PWM	Full-step and Micro-step	1	1.2 MHz	10 MHz	Any value (user selection)
Full-step mode (SW control)	FTM or TPM	Disabled	GPIO	Full-step	1	131 kHz	1 MHz	Secondary timer is not enabled
Full-step mode	FTM	Disabled	PWM	Full-step	1	131 kHz	1 MHz	Secondary timer is not enabled
Full-step mode	FTM	Enabled	PWM	Full-step	1	131 kHz	1 MHz	The same values as for primary timer
Full-step and		Full-step and	Full stop and	1st value for Full-step: 131 kHz	1st value for Full-step: 1 MHz	Secondary timer is		
Micro-step mode	FTM	Disabled	PWM Micro-step 2	2	2nd value for Micro-step:1.2 MHz	2nd value for Micro-step:10 MHz	not enabled	
Full-step and Micro-step mode	FTM	Enabled	PWM	Full-step	1	1.2 MHz	10 MHz	The same values as for primary timer

Table 10. Minimum and Maximum Timer Input Frequency per Stepper Control Mode

6.3.5.1 Computation of Minimum Full-stepping Speed

The minimum full-stepping speed depends on the timer input frequency only when the **Primary Timer Device** is set to FTM (FTM0_CNT, or FTM1_CNT, etc.), the **Secondary Timer** property is disabled and **Output Control** is set to **PWM**. The Full-step signal is generated by a timer while channels toggle on compare (See Figure 21).

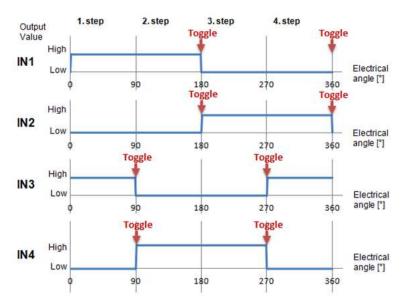


Figure 21. Generating the Full-step control signal