

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

NXP Semiconductors

Data Sheet: Product Preview

S32K1XX

S32K1xx Data Sheet

Caution

 S32K148, S32K142, S32K146, and S32K116 specific information is preliminary until these devices are qualified.

Key Features

- Operating characteristics
 - Voltage range: 2.7 V to 5.5 V
 - Ambient temperature range: -40 °C to 105 °C for HSRUN, -40 °C to 125 °C for RUN
- ARMTM Cortex-M4F/M0+ core, 32-bit CPU
 - Supports up to 112 MHz frequency (HSRUN) with 1.25 Dhrystone MIPS per MHz
 - ARM Core based on the ARMv7 Architecture and Thumb®-2 ISA
 - Integrated Digital Signal Processor (DSP)
 - Configurable Nested Vectored Interrupt Controller (NVIC)
 - Single Precision Floating Point Unit (FPU)
- Clock interfaces
 - 4 40 MHz fast external oscillator (SOSC)
 - 48 MHz Fast Internal RC oscillator (FIRC)
 - 8 MHz Slow Internal RC oscillator (SIRC)
 - 128 kHz Low Power Oscillator (LPO)
 - Up to 112 MHz (HSRUN) System Phased Lock Loop (SPLL)
 - Up to 50 MHz DC external square wave input clock
 - Real Time Counter (RTC)
- · Power management
 - Low-power ARM Cortex-M4F/M0+ core with excellent energy efficiency
 - Power Management Controller (PMC) with multiple power modes: HSRUN, Run, Stop, VLPR, and VLPS
 - Supports peripheral specific clock gating. Only specific peripherals remain working in low power modes.

- Memory and memory interfaces
 - Up to 2 MB program flash memory with ECC
 - 64 KB FlexNVM for data flash memory with ECC and EEPROM emulation
 - Up to 256 KB SRAM with ECC
 - Up to 4 KB of FlexRAM for use as SRAM or EEPROM emulation
 - Up to 4 KB Code cache to minimize performance impact of memory access latencies
 - QuadSPI with HyperBusTM support
- Mixed-signal analog
 - Up to two 12-bit Analog-to-Digital Converter (ADC) with up to 32 channel analog inputs per module
 - One Analog Comparator (CMP) with internal 8-bit Digital to Analog Converter (DAC)
- · Debug functionality
 - Serial Wire JTAG Debug Port (SWJ-DP) combines
 - Debug Watchpoint and Trace (DWT)
 - Instrumentation Trace Macrocell (ITM)
 - Test Port Interface Unit (TPIU)
 - Flash Patch and Breakpoint (FPB) Unit
- Human-machine interface (HMI)
 - Up to 156 GPIO pins with interrupt functionality
 - Non-Maskable Interrupt (NMI)
- · Communications interfaces
 - Up to three Low Power Universal Asynchronous Receiver/Transmitter (LPUART) modules with DMA support and low power availability
 - Up to three Low Power Serial Peripheral Interface (LPSPI) modules with DMA support and low power availability
 - Up to two Low Power Inter-Integrated Circuit (LPI2C) modules with DMA support and low power availability
 - Up to three FlexCAN modules (with optional CAN-FD support)
 - FlexIO module for flexible and high performance serial interfaces

This document contains information on a product under development. NXP reserves the right to change or discontinue this product without notice.

- Reliability, safety and security
 - HW Security Engine (CSEc)
 - Internal watchdog (WDOG)
 - External Watchdog monitor (EWM) module
 - Error-Correcting Code (ECC) on flash and SRAM memories
 - Cyclic Redundancy Check (CRC) module
 - 128-bit Unique Identification (ID) number
 - System Memory Protection Unit (System MPU)
- · Timing and control
 - Up eight independent 16-bit FlexTimers (FTM) module, offering up to 64 standard channels (IC/OC/PWM)
 - One 16-bit Low Power Timer (LPTMR) with flexible wake up control
 - Two Programmable Delay Blocks (PDB) with flexible trigger system
 - One 32-bit Low Power Interrupt Timer (LPIT) with 4 channels
 - 32-bit Real Time Counter (RTC)
- · I/O and package
 - 32-pin QFN, 48-pin LQFP, 64-pin LQFP, 100-pin LQFP, MAPBGA-100, 144-pin LQFP, 176-pin LQFP package options
- 16 channel DMA with up to 63 request sources using DMAMUX

Table of Contents

1	Blo	ck diagra	am		4			6.2.5	SPLL ele	ectrical specifications	27
2	Fear	ture com	parison		5		6.3	Memor	ry and mer	nory interfaces	27
3	Ord	ering par	rts		7			6.3.1	Flash me	emory module (FTFC) electrical	
	3.1	Determ	nining valid	orderable parts	7				specifica	tions	27
	3.2	Orderii	ng informat	ion	8				6.3.1.1	Flash timing specifications —	
4	Gen	eral			9					commands	27
	4.1	Absolu	ıte maximui	n ratings	9				6.3.1.2	Reliability specifications	29
	4.2	Voltage	e and curre	nt operating requirements	10			6.3.2	QuadSPI	AC specifications	30
	4.3	Therma	al operating	characteristics	11		6.4	Analog	g modules.		34
	4.4	Power	and ground	pins	12			6.4.1	ADC ele	ctrical specifications	34
	4.5	LVR, I	LVD and PC	OR operating requirements	13				6.4.1.1	12-bit ADC operating conditions	34
	4.6	Power	mode transi	tion operating behaviors	14				6.4.1.2	12-bit ADC electrical characteristics	36
	4.7	Power	consumptio	n	15			6.4.2	CMP wit	th 8-bit DAC electrical specifications	37
		4.7.1	Modes co	nfiguration	18		6.5	Comm	unication 1	nodules	41
	4.8	ESD ha	andling ratio	1gs	18			6.5.1	LPUAR	Γ electrical specifications	41
	4.9	EMC r	adiated emi	ssions operating behaviors	18			6.5.2	LPSPI el	ectrical specifications	41
5	I/O	paramete	ers		18			6.5.3	LPI2C el	lectrical specifications	48
	5.1	AC ele	ectrical char	acteristics	18			6.5.4	FlexCAN	N electical specifications	49
	5.2	Genera	al AC specif	ications	19			6.5.5	SAI elec	trical specifications	49
	5.3	DC ele	ectrical spec	ifications at 3.3 V Range	19			6.5.6	Ethernet	AC specifications	51
	5.4	DC ele	ectrical spec	ifications at 5.0 V Range	20			6.5.7	Clockou	t frequency	54
	5.5	AC ele	ectrical spec	ifications at 3.3 V range	21		6.6	Debug	modules		54
	5.6	AC ele	ectrical spec	ifications at 5 V range	22			6.6.1	SWD ele	ectrical specofications	54
	5.7	Standa	rd input pin	capacitance	22			6.6.2	Trace ele	ectrical specifications	56
	5.8	Device	clock spec	fications	22			6.6.3	JTAG el	ectrical specifications	57
6	Peri	pheral o	perating rec	uirements and behaviors	23	7	The	rmal attı	ributes		60
	6.1	System	n modules		23		7.1	Descri	ption		60
	6.2	Clock i	interface mo	odules	23		7.2	Therm	al characte	ristics	60
		6.2.1	External S	System Oscillator electrical specificati	ons23		7.3	Genera	al notes for	specifications at maximum junction	
		6.2.2	External S	System Oscillator frequency specificat	ions . 25			temper	ature		64
		6.2.3	System C	lock Generation (SCG) specifications.	26	8	Dim	ensions			65
			6.2.3.1	Fast internal RC Oscillator (FIRC)			8.1	Obtain	ing packag	ge dimensions	65
				electrical specifications	26	9	Pinc	outs			66
			6.2.3.2	Slow internal RC oscillator (SIRC)			9.1	Packag	ge pinouts a	and signal descriptions	66
				electrical specifications	26	10	Rev	ision Hi	story		66
		6.2.4	Low Pow	er Oscillator (LPO) electrical specification	ations						
					27						

1 Block diagram

Following figures show superset high level architecture block diagrams of S32K14x series and S32K11x series respectively. Other devices within the family have a subset of the features. See Feature comparison for chip specific values.

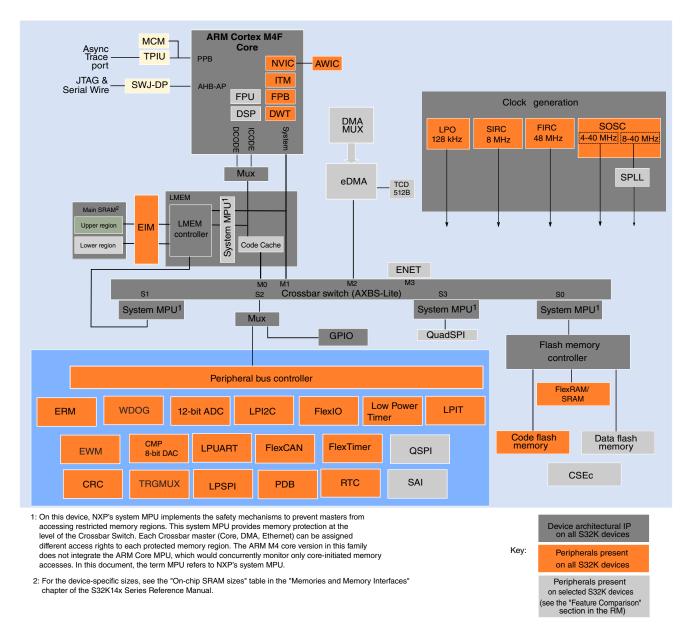


Figure 1. High-level architecture diagram for the S32K14x family

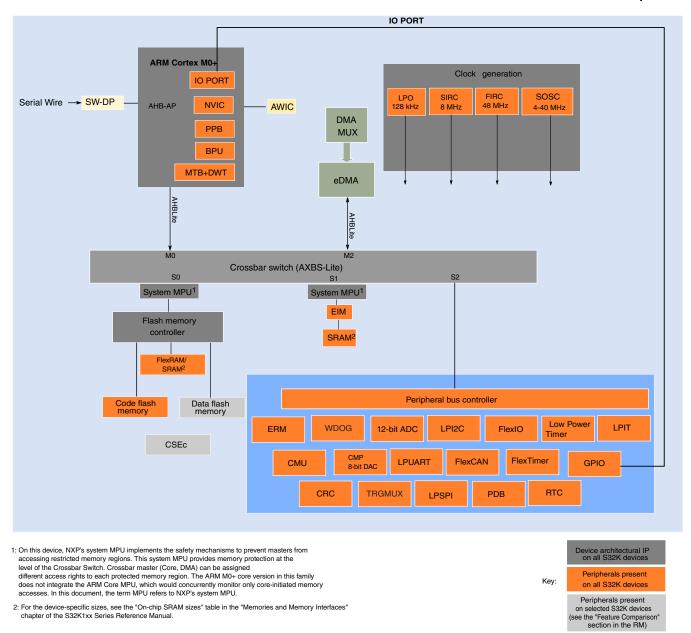


Figure 2. High-level architecture diagram for the S32K11x family

2 Feature comparison

The following figure summarizes the memory and package options for the S32K product series and demonstrates where this device fits within the overall series. All devices which share a common package are pin-to-pin compatible.

Feature comparison

		S32	K11x		S32I	S32K14x			
	Parameter	K116	K118	K142	K144	K146	K148		
	Core	Al	RM [®] Cortex™-M0+		AF	RM [®] Cortex™-M4	F		
	Frequency		MHz	up to 112 MHz (HSRUN)					
	IEEE-754 FPU		0	•					
	HW security module (CSEc)1		•	•					
	CRC module	1x			1	х			
	ISO 26262	capable u	capable up to ASIL-B		capable up to ASIL-B				
	Peripheral speed	up to 4	18 MHz		up to 112 MI	Hz (HSRUN)			
	Crossbar		•		•	•			
Ę	DMA	•			•	•			
System	EWM		0		•	•			
Ś	Memory protection unit	•				•			
	FIRC CMU		•			0			
	Watchdog	1	x		1	x			
	Low power modes		•		•	•			
	HSRUN mode	,	0		(•			
	Number of I/Os	up to 43	up to 58	up t	o 89	up to 128	up to 156		
	Single supply voltage	2.7 -	5.5 V		2.7 -	5.5 V			
	Operating temperature (Ta) Temperature ambient		+105°C / +125°C		-40 to +85ºC / +	-105°C / +125°C			
	Flash	128 KB	256 KB	256 KB	512 KB	1 MB	2 MB ²		
	Error correction code (ECC)		•			-			
	System RAM (including FlexRAM and MTB)	17 KB	25 KB	32 KB	64 KB	128 KB	256 KB		
5	FlexRAM (also available as system RAM)	2 KB				KB			
Memory	Cache	0			41	KB			
	EEPROM emulated by FlexRAM¹	2 KB (up to 32 KB D-Flash)		4 KE	3 (up to 64 KB D-F	lash)	4 KB (up to 512 KB D-Flash as a part of 2 MB Flash) ³		
	External memory interface	0		0			QuadSPI incl. HyperBus™		
	Low power interrupt timer	1x		1x					
声	FlexTimer (16-bit counter) 8 channels		(16)	4x (32) 6x (48)			8x (64)		
Timer	Low power timer (LPTMR)		х	1x					
	Real time counter (RTC)		X		1				
	Programmable delay block (PDB)		X		2		. (2.1)		
log	Trigger mux (TRGMUX)	1x (43)	1x (45)		(64)	1x (73)	1x (81)		
Analog	12-bit SAR ADC (1 MSPS each)	1x (14)	1x (16)	2x	(16)	2x (24)	2x (32)		
_	Comparator with 8-bit DAC		X		1	X			
	100 Mbit IEEE-1588 ethernet MAC		0		0		1x 2x		
Communication	Serial audio interface (AC97, TDM, I2S) Low power UART/LIN		ex	2x		3x	2X		
i	(Supports LIN protocol versions 1.3, 2.0, 2.1, and SAE J2602)	4		0		2			
Ē	Low power SPI	1x	2x	2x	4	3x	0		
S	Low power I2C FlexCAN		x x	2x	1x 3x	3x	2x 3x		
	(CAN-FD ISO/CD 11898-1)		ith FD)	(1x with FD)	(1x with FD)	(2x with FD)	(3x with FD)		
	FlexIO (8 pins configurable as UART, SPI, I2C, I2S)	1	x		1x	•	•		
IDEs	Debug & trace	SWD, MTB (1 KB), JTAG4		SWD, JTAG (ITM, SWV, SWO)			SWD, JTAG (ITM, SWV, SWO), ETM		
_	Ecosystem (IDE, compiler, debugger)	NXP S32 Design Studio (GCC) + SDK, IAR, GHS, COSMIC, Lauterbach, iSystems		NXP S32 Design Studio (GCC) + SDF IAR, GHS, COSMIC, Lauterbach, iSyste		ζ, ems			
Other	Packages	QFN-32 LQFP-48	LQFP-48 LQFP-64	LQFP-64 LQFP-100	LQFP-64 LQFP-100 MAPBGA-100	LQFP-64 MAPBGA-100 LQFP-100 LQFP-144	MAPBGA-100 LQFP-144 LQFP-176		

- LEGEND:

 Not implemented

 Available on the device

 1 No FTFC commands, including CSE commands (CSEc parts) are available when chip is in VLPR or HSRUN mode.

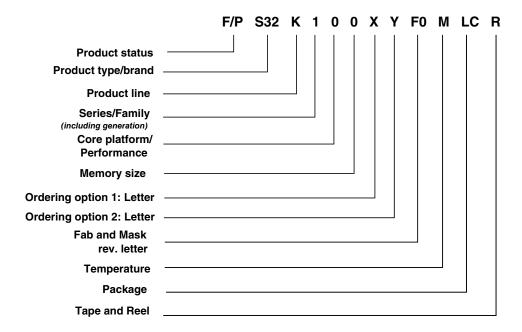
 2 Available when EEEPROM, CSEc and Data Flash are not used. Else only up to 1,984 KB is available for Program Flash.

 3 Up to 64 KB of flash is used as EEPROM backup and the remaining 448 KB of the last 512 KB block can be used as Data flash or Program flash. See chapter FTFC for details.

 4 Only for BSR

Figure 3. S32K1xx product series comparison

3 Ordering parts


3.1 Determining valid orderable parts

To determine the orderable part numbers for this device, go to www.nxp.com and perform a part number search. Additionally see the attachment *S32K_Part_Numbers.xlsx*.

NOTE

Not all part number combinations exist

3.2 Ordering information

Product status

P: Prototype

F: Qualified ordering P/N

Product type/brand

S32: Automotive 32-bit MCU

Product line

K: ARM Cortex MCUs M: MagniV/Mixed Signal

Series/Family

- 1: 1st product series
- 2: 2nd product series

Core platform/Performance

- 1: ARM Cortex M0+
- 4: ARM Cortex M4F

Memory size

	2	4	6	8
M0+	32 K	64 K	128 K	256 K
M4F	256 K	512 K	1 M	2 M

Ordering option

X: Speed

B: 48 MHz without DMA (only for S32K11x)

L: 48 MHz with DMA (only for S32K11x)

M: 64 MHz

H: 80 MHz

U: 112 MHz

Y: Optional feature

N: No/None

R: Max. RAM

F: CAN-FD and FlexIO including max. RAM

S: Security including max. RAM

A: CAN-FD, FlexIO, and Security including max. RAM

E: Ethernet and audio including max. RAM

J: CAN FD, FlexIO, Security, Ethernet and audio including max. RAM

Fab and Mask rev. letter

Fx: ATMC Tx: GF XX: Flex #

x0: 1st fab revision x1: 2nd fab revision

Temperature

C: -40C to 85C V: -40C to 105C M: -40C to 125C

Package

Pins	LQFP	LQFP -EP	QFN	BGA
32	LC		FM	-
48	LF	KF	FT	-
64	LH	кн	-	-
100	L	,	-	МН
144	LQ	-	-	-
176	LU	1	-	

Tape and Reel

T: Trays and Tubes R: Tape and Reel

Figure 4. Ordering information

4 General

4.1 Absolute maximum ratings

NOTE

Functional operating conditions appear in the DC electrical characteristics. Absolute maximum ratings are stress ratings only, and functional operation at the maximum values is not guaranteed. See footnotes in the following table for specific conditions.

Stress beyond the listed maximum values may affect device reliability or cause permanent damage to the device.

All the limits defined in the datasheet specification must be honored together and any volilation to any one or more will not gaurantee desired operation.

Symbol	Parameter	Conditions ¹	Min	Max	Unit
V_{DD}^2	2.7 V - 5. 5V input supply voltage	_	-0.3	5.8 ³	V
V_{REFH}	3.3 V / 5.0 V ADC high reference voltage	_	-0.3	5.8 ³	V
I _{INJPAD_DC_ABS} ⁴	Continuous DC input current (positive / negative) that can be injected into an I/O pin	_	-3	+3	mA
V _{IN_DC}	Continuous DC Voltage on any I/O pin with respect to V _{SS}	_	-0.8	5.8 ⁵	V
I _{INJSUM_DC_ABS}	Sum of absolute value of injected currents on all the pins (Continuous DC limit)	_	_	30	mA
T _{ramp} ⁶	Supply ramp rate	_	0.5 V/min	500 V/ms	_
T _A ⁷	Ambient temperature	_	-40	125	°C
T _{STG}	Storage temperature	_	-55	165	°C
V _{IN_} TRANSIENT	Transient overshoot voltage allowed on I/O pin beyond V _{IN_DC limit}	_	_	6.8 ⁸	V

Table 1. Absolute maximum ratings

- 1. All voltages are referred to V_{SS} unless otherwise specified.
- 2. As V_{DD} varies between the minimum value and the absolute maximum value the analog characteristics of the I/O and the ADC will both change. See section I/O parameters and ADC electrical specifications respectively for details.
- 3. 60 s lifetime No restrictions i.e. The part can switch.
 - 10 hours lifetime Device in reset i.e. The part cannot switch.
- 4. When input pad voltage levels are close to V_{DD} or V_{SS}, practically no current injection is possible.
- 5. While respecting the maximum current injection limit
- 6. Limit applies to both maximum absolute maximum ramp rate and typical operating conditions.
- 7. T_J (Junction temperature)=135 °C. Assumes T_A =125 °C for RUN mode

General

T_J (Junction temperature)=125 °C. Assumes TA=105 °C for HSRUN mode

- Assumes maximum θJA for 2s2p board. See Thermal characteristics
- 8. 60 seconds lifetime; device in reset (no outputs enabled/toggling)

4.2 Voltage and current operating requirements NOTE

Full functionality/specifications cannot be guaranteed when voltage drops below 2.7 V.

Table 2. Voltage and current operating requirements 1

Symbol	Description	Min.	Max.	Unit	Notes
V _{DD} ²	Supply voltage	2.7 ³	5.5	V	4
V_{DD_OFF}	Voltage allowed to be developed on V _{DD} pin when it is not powered from any external power supply source.	0	0.1	V	
V_{DDA}	Analog supply voltage	2.7	5.5	V	4
$V_{DD} - V_{DDA}$	V _{DD} -to-V _{DDA} differential voltage	- 0.1	0.1	V	
V _{REFH}	ADC reference voltage high	2.7	V _{DDA} + 0.1	V	5
V _{REFL}	ADC reference voltage low	-0.1	0.1	V	
V _{ODPU}	Open drain pullup voltage level	V_{DD}	V_{DD}	V	6
I _{INJPAD_DC_OP} ⁷	Continuous DC input current (positive / negative) that can be injected into an I/O pin	-3	+3	mA	
I _{INJSUM_DC_OP}	Continuous total DC input current that can be injected across all I/O pins such that there's no degradation in accuracy of analog modules: ADC and ACMP (See section Analog Modules)	_	30	mA	

- 1. Typical conditions assumes $V_{DD} = V_{DDA} = V_{REFH} = 5 \text{ V}$, temperature = 25 °C and typical silicon process unless otherwise stated.
- 2. As V_{DD} varies between the minimum value and the absolute maximum value the analog characteristics of the I/O and the ADC will both change. See section I/O parameters and ADC electrical specifications respectively for details.
- 3. S32K148 will operate from 2.7 V when executing from internal FIRC. When the PLL is engaged S32K148 is guaranteed to operate from 2.97 V. All other S32K family devices operate from 2.7 V in all modes.
- V_{DD} and V_{DDA} must be shorted to a common source on PCB. Appropriate decoupling capacitors to be used to filter noise on the supplies. See application note AN5032 for reference supply design for SAR ADC.
- 5. V_{REFH} should always be equal to or less than V_{DDA} + 0.1 V and V_{DD} + 0.1 V
- 6. Open drain outputs must be pulled to V_{DD}.
- 7. When input pad voltage levels are close to V_{DD} or V_{SS} , practically no current injection is possible.

4.3 Thermal operating characteristics

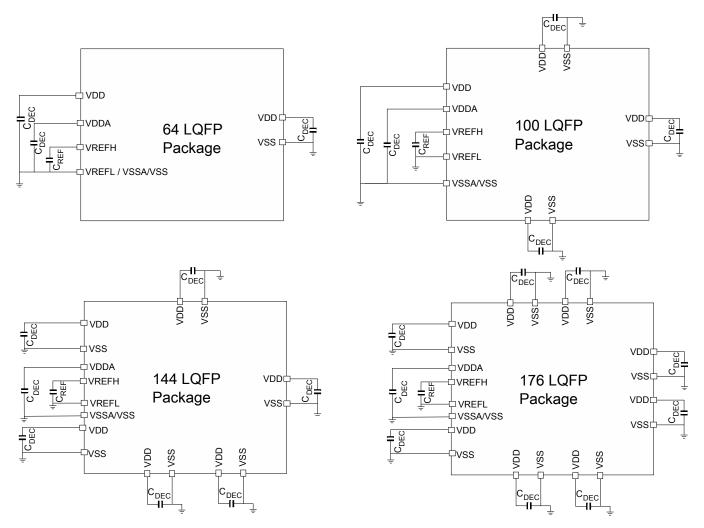
Table 3. Thermal operating characteristics for 64 LQFP, 100 LQFP, and 100 MAP-BGA packages.

Symbol	Parameter	Value			Unit
		Min.	Тур.	Max.	
T _{A C-Grade Part}	Ambient temperature under bias	-40	_	85 ¹	°C
T _{J C-Grade Part}	Junction temperature under bias	-40	_	105 ¹	°C
T _{A V-Grade Part}	Ambient temperature under bias	-40	_	105 ¹	°C
T _{J V-Grade Part}	Junction temperature under bias	-40	_	125 ¹	°C
T _{A M-Grade Part}	Ambient temperature under bias	-40	_	125 ²	°C
T _{J M-Grade Part}	Junction temperature under bias	-40	_	135 ²	°C

^{1.} Values mentioned are measured at ≤ 112 MHz in HSRUN mode.

^{2.} Values mentioned are measured at ≤ 80 MHz in RUN mode.

4.4 Power and ground pins



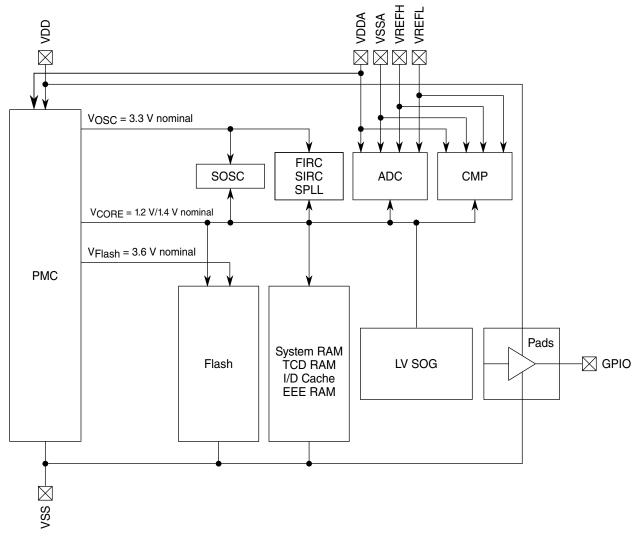

Figure 5. Pinout decoupling

Table 4. Supplies decoupling capacitors 1, 2

Symbol	Description	Min. ³	Тур.	Max.	Unit
C _{REF} , 4, 5	ADC reference high decoupling capacitance	70	100	_	nF
C _{DEC} ⁵ , ⁶ , ⁷	Recommended decoupling capacitance	70	100	_	nF

- V_{DD} and V_{DDA} must be shorted to a common source on PCB. Appropriate decoupling capacitors to be used to filter noise on the supplies. See application note AN5032 for reference supply design for SAR ADC. All V_{SS} pins should be connected to common ground at the PCB level.
- 2. All decoupling capacitors must be low ESR ceramic capacitors (for example X7R type).
- 3. Minimum recommendation is after considering component aging and tolerance.
- 4. For improved performance, it is recommended to use 10 µF, 0.1 µF and 1 nF capacitors in parallel.
- 5. All decoupling capacitors should be placed as close as possible to the corresponding supply and ground pins.
- 6. Contact your local Field Applications Engineer for details on best analog routing practices.
- 7. The filtering used for decoupling the device supplies must comply with the following best practices rules:
 - The protection/decoupling capacitors must be on the path of the trace connected to that component.

- No trace exceeding 1 mm from the protection to the trace or to the ground.
- The protection/decoupling capacitors must be as close as possible to the input pin of the device (maximum 2 mm).
- · The ground of the protection is connected as short as possible to the ground plane under the integrated circuit.

*Note: VSSA and VSS are shorted at package level

Figure 6. Power diagram

4.5 LVR, LVD and POR operating requirements

Table 5. V_{DD} supply LVR, LVD and POR operating requirements

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{POR}	Rising and falling V _{DD} POR detect voltage	1.1	1.6	2.0	V	
V _{LVR}	LVR falling threshold (RUN, HSRUN, and STOP modes)	2.50	2.58	2.7	V	
V _{LVR_HYST}	LVR hysteresis	_	45	_	mV	1
V_{LVR_LP}	LVR falling threshold (VLPS/VLPR modes)	1.97	2.22	2.44	V	

Table 5. V_{DD} supply LVR, LVD and POR operating requirements (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V_{LVD}	Falling low-voltage detect threshold	2.8	2.875	3	V	
V _{LVD_HYST}	LVD hysteresis	_	50	_	mV	1
V_{LVW}	Falling low-voltage warning threshold	4.19	4.305	4.5	V	
V _{LVW_HYST}	LVW hysteresis	_	75	_	mV	1
V _{BG}	Bandgap voltage reference	0.97	1.00	1.03	V	

^{1.} Rising threshold is the sum of falling threshold and hysteresis voltage.

4.6 Power mode transition operating behaviors

All specifications in the following table assume this clock configuration:

- RUN Mode:
 - Clock source: FIRC
 - SYS_CLK/CORE_CLK = 48 MHz
 - BUS CLK = 48 MHz
 - FLASH_CLK = 24 MHz
- HSRUN Mode:
 - Clock source: SPLL
 - SYS_CLK/CORE_CLK = 112 MHz
 - BUS_CLK = 56 MHz
 - FLASH_CLK = 28 MHz
- VLPR Mode:
 - Clock source: SIRC
 - SYS_CLK/CORE_CLK = 4 MHz
 - BUS CLK = 4 MHz
 - FLASH CLK = 1 MHz
- STOP1/STOP2 Mode:
 - Clock source: FIRC
 - SYS_CLK/CORE_CLK = 48 MHz
 - BUS_CLK = 48 MHz
 - FLASH CLK = 24 MHz
- VLPS Mode: All clock sources disabled.

Table 6. Power mode transition operating behaviors

Symbol	Description	Min.	Тур.	Max.	Unit
t _{POR}	After a POR event, amount of time from the point V_{DD} reaches 2.7 V to execution of the first instruction across the operating temperature range of the chip.		325	_	μs

Table 6. Power mode transition operating behaviors (continued)

Symbol	Description	Min.	Тур.	Max.	Unit
	VLPS → RUN	8	_	17	μs
	STOP1 → RUN	0.07	0.075	0.08	μs
	STOP2 → RUN	0.07	0.075	0.08	μs
	VLPR → RUN	19	_	26	μs
	VLPR → VLPS	5.75	6.25	6.5	μs
	VLPS → VLPR	26.5	27.25	27.75	μs
	RUN → Compute operation	0.35	0.38	0.4	μs
	HSRUN → Compute operation	0.3	0.31	0.35	μs
	RUN → STOP1	0.35	0.38	0.4	μs
	RUN → STOP2	0.2	0.23	0.25	μs
	RUN → VLPS	0.35	0.38	0.4	μs
	RUN → VLPR	4.4	4.7	5	μs
	VLPS → Asynchronous DMA Wakeup	105	110	125	μs
	STOP1 → Asynchronous DMA Wakeup	1	1.1	1.3	μs
	STOP2 → Asynchronous DMA Wakeup	1	1.1	1.3	μs
	Pin reset → Code execution		214	_	μs

NOTE

HSRUN should only be used when frequencies in excess of 80 MHz are required. When using 80 MHz and below, RUN mode is the recommended operating mode.

4.7 Power consumption

The following table shows the power consumption targets for the device in various mode of operations.

Table 7. Power consumption (Typicals unless stated otherwise) 1

	Ambient Temperature (°C)		VLPS	(μ Α) ^{2, 3}		.PR nA)	STOP1 (mA)	STOP2 (mA)		I@48 (mA)		964 MHz nA)		980 MHz nA)		N@112 (mA) ⁴	ldd/MH z (µA/ MHz) ⁵
			Peripherals disabled ⁶	Peripherals enabled	Peripherals disabled	Peripherals enabled			Peripherals disabled	Peripherals enabled							
S32K116	25	Тур	26	38	1.9	2.5	7	12	TBD	TBD			N	IA			TBD
	105	Тур	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	-						TBD
		Max	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD							TBD
	125	Max	TBD	TBD	TBD	TBD	TBD	TBD	TBD	40		T	T	ı	T	T	TBD
S32K118	25	Тур	26	38	1.9	2.5	7	12	TBD	TBD			N	ÍΑ			TBD
	105	Тур	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD							TBD
		Max	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD							TBD
	125	Max	TBD	TBD	TBD	TBD	TBD	TBD	TBD	42							TBD
S32K142	25	Тур	29	42	1.9	2.5	10	15	TBD	TBD	١	NA .	TBD	TBD	TBD	TBD	TBD
	105	Тур	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD			48	57	65	75	TBD
		Max	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD			TBD	TBD	85	90	TBD
	125	Max	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD			60	65	N	İΑ	TBD
S32K144	25	Тур	29.8	39.1	1.48	1.50	7	7.7	19.7	26.9	25.1	33.3	30.2	39.6	43.3	55.6	378

S32K1xx Data Sheet, Rev. 4, 06/2017

Table 7. Power consumption (Typicals unless stated otherwise) 1 (continued)

	Ambient Temperature (°C)		VLPS	(μ Α) ^{2, 3}		.PR nA)	STOP1 (mA)	STOP2 (mA)		I@48 (mA)		64 MHz 1A)		80 MHz nA)		N@112 (mA) ⁴	ldd/MH z (μΑ/ MHz) ⁵
	85	Тур	150	159	1.72	1.85	7.2	8.1	20.4	27.1	26.1	33.5	30.5	40	43.9	56.1	381
		Max	359	384	2.60	2.65	8.3	9.2	21.9	28.5	27.8	34.4	32.9	41.5	45.5	57.5	411
	105	Тур	256	273	1.80	2.10	7.8	8.5	20.6	27.4	26.6	33.8	31.2	40.5	44.8	57.1	390
		Max	850	900	2.65	2.70	10.3	10.6	22.7	30	28.3	36.5	33.4	43.3	47.9	61.3	418
	125	Max	1960	1998	3.18	3.25	12.2	13	25.3	32.7	35	39.8	37.1	46.5	NA	NA	464
S32K146	25	Тур	40	55	5	6	15	20	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD
	105	Тур	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD
		Max	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	95	110	TBD
	125	Max	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	70	80	NA	NA	TBD
S32K148 ^{7, 8}	25	Тур	40	60	5	6	15	20	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD
	105	Тур	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD
		Max	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	120	125	TBD
	125	Max	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	100	110	NA	NA	TBD

- 1. Typical current numbers are indicative for typical silicon process and may vary based on the silicon distribution and user configuration.
- 2. This is an average based on the use case described in the Comparator section, whereby the analog sampling is taking place periodically, with a mechanism to only enable the DAC as required. The numbers quoted assumes that only a single ANLCMP is active and the others are disabled
- 3. Current numbers are for reduced configuration and may vary based on user configuration and silicon process variation.
- 4. HSRUN mode must not be used at 125°C. Max ambient temperature for HSRUN mode is 105°C.
- 5. Values mentioned are measured at 25 °C at RUN@80 MHz with peripherals disabled.
- 6. With PMC_REGSC[CLKBIASDIS] set to 1. See Reference Manual for details.
- 7. Above S32K148 data is preliminary targets only
- 8. The S32K148 data points assume that ENET/QuadSPI/SAI etc. are active. If the same configuration is selected as per the S32K144, then the two devices will have very similar IDD.

4.7.1 Modes configuration

Attached *S32K1xx_Power_Modes _Configuration.xlsx* details the modes used in gathering the power consumption data stated in the above table Table 7. For full functionality refer to table: Module operation in available low power modes of the *Reference Manual*.

4.8 ESD handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
V _{HBM}	Electrostatic discharge voltage, human body model	- 4000	4000	V	1
V _{CDM}	Electrostatic discharge voltage, charged-device model		•	•	2
	All pins except the corner pins	- 500	500	V	
	Corner pins only	- 750	750	V	
I _{LAT}	Latch-up current at ambient temperature of 125 °C	- 100	100	mA	3

Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM).

4.9 EMC radiated emissions operating behaviors

EMC measurements to IC-level IEC standards are available from NXP on request.

5 I/O parameters

5.1 AC electrical characteristics

Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure.

^{2.} Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.

^{3.} Determined according to JEDEC Standard JESD78, IC Latch-Up Test.

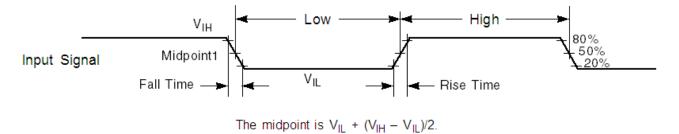


Figure 7. Input signal measurement reference

5.2 General AC specifications

These general purpose specifications apply to all signals configured for GPIO, UART, and timers.

Description Symbol Min. Unit **Notes** GPIO pin interrupt pulse width (digital glitch filter Bus clock 1.5 1, 2 disabled) — Synchronous path cycles GPIO pin interrupt pulse width (digital glitch filter 3 50 ns disabled, passive filter disabled) — Asynchronous path **WFRST RESET** input filtered pulse 4 100 ns **WFRST** RESET input not filtered pulse 100 ns

Table 8. General switching specifications

- 1. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In Stop and VLPS modes, the synchronizer is bypassed so shorter pulses can be recognized in that case.
- 2. The greater of synchronous and asynchronous timing must be met.
- 3. These pins do not have a passive filter on the inputs. This is the shortest pulse width that is guaranteed to be recognized.
- 4. Minimum length of RESET pulse, guaranteed not to be filtered by the internal filter.

5.3 DC electrical specifications at 3.3 V Range

Table 9. DC electrical specifications at 3.3 V Range

Symbol	Parameter		Value		Unit	Notes
		Min.	Тур.	Max.		
V _{DD}	I/O Supply Voltage	2.7	3.3	4	٧	1
V _{ih}	Input Buffer High Voltage	$0.7 \times V_{DD}$	_	V _{DD} + 0.3	V	2
V _{il}	Input Buffer Low Voltage	V _{SS} – 0.3		$0.3 \times V_{DD}$	V	3
V _{hys}	Input Buffer Hysteresis	$0.06 \times V_{DD}$	_	_	V	
Ioh_Standard	I/O current source capability measured when pad = $(V_{DDE} - 0.8 \text{ V})$	3.5	_	_	mA	

Table 9. DC electrical specifications at 3.3 V Range (continued)

Symbol	Parameter		Value		Unit	Notes
		Min.	Тур.	Max.		
Iol_Standard	I/O current sink capability measured when pad = 0.8 V	3	_	_	mA	
loh_Strong	I/O current source capability measured when pad = $(V_{DDE} - 0.8 \text{ V})$	14	_	_	mA	4
Iol_Strong	I/O current sink capability measured when pad = 0.8 V	12	_	_	mA	5
IOHT	Output high current total for all ports	_	_	100	mA	
IIN	Input leakage current (per pin) for full temper	ature range a	at $V_{DD} = 3.3$	V		6
	All pins other than high drive port pins		0.005	0.5	μA	
	High drive port pins ⁷		0.010	0.5	μA	
R _{PU}	Internal pullup resistors	20		60	kΩ	8
R _{PD}	Internal pulldown resistors	20		60	kΩ	9

- 1. S32K148 will operate from 2.7 V when executing from internal FIRC. When the PLL is engaged S32K148 is guaranteed to operate from 2.97 V. All other S32K family devices operate from 2.7 V in all modes.
- 2. For reset pads, same V_{ih} levels are applicable
- 3. For reset pads, same V_{il} levels are applicable
- 4. The value given is measured at high drive strength mode. For value at low drive strength mode see the loh_Standard value given above.
- 5. The value given is measured at high drive strength mode. For value at low drive strength mode see the lol_Standard value given above.
- 6. Several I/O have both high drive and normal drive capability selected by the associated Portx_PCRn[DSE] control bit. All other GPIOs are normal drive only. For details refer to \$32K144_IO_Signal_Description_Input_Multiplexing.xlsx attached with the Reference Manual.
- 7. When using ENET and SAI on S32K148, the overall device limits associated with high drive pin configurations must be respected i.e. On 144-pin LQFP the general purpose pins: PTA10, PTD0, and PTE4 must be set to low drive.
- 8. Measured at input $V = V_{SS}$
- 9. Measured at input V = V_{DD}

5.4 DC electrical specifications at 5.0 V Range

Table 10. DC electrical specifications at 5.0 V Range

Symbol	Parameter		Value		Unit	Notes
		Min.	Тур.	Max.		
V _{DD}	I/O Supply Voltage	4	_	5.5	V	
V _{ih}	Input Buffer High Voltage	0.65 x V _{DD}	_	V _{DD} + 0.3	V	1
V _{il}	Input Buffer Low Voltage	V _{SS} – 0.3	_	0.35 x V _{DD}	V	2
V _{hys}	Input Buffer Hysteresis	0.06 x V _{DD}	_	_	V	
Ioh_Standard	I/O current source capability measured when pad = (V _{DDE} - 0.8 V)	5	_	_	mA	
Iol_Standard	I/O current sink capability measured when pad = 0.8 V	5	_	_	mA	

Table 10. DC electrical specifications at 5.0 V Range (continued)

Symbol	Parameter		Value	,	Unit	Notes
		Min.	Тур.	Max.		
loh_Strong	I/O current source capability measured when pad = V _{DDE} - 0.8 V	20	_	_	mA	3, 4
Iol_Strong	I/O current sink capability measured when pad = 0.8 V	20	_	_	mA	4, 5
IOHT	Output high current total for all ports	_	_	100	mA	
IIN	Input leakage current (per pin) for full	temperature	e range at V _D	_D = 5.5 V		6
	All pins other than high drive port pins		0.005	0.5	μA	
	High drive port pins		0.010	0.5	μA	
R _{PU}	Internal pullup resistors	20		50	kΩ	7
R _{PD}	Internal pulldown resistors	20		50	kΩ	8

- 1. For reset pads, same V_{ih} levels are applicable
- 2. For reset pads, same V_{il} levels are applicable
- 3. The value given is measured at high drive strength mode. For value at low drive strength mode see the loh_Standard value given above.
- 4. The strong pad I/O pin is capable of switching a 50 pF load at up to 40 MHz.
- 5. The value given is measured at high drive strength mode. For value at low drive strength mode see the Iol_Standard value given above.
- 6. Several I/O have both high drive and normal drive capability selected by the associated Portx_PCRn[DSE] control bit. All other GPIOs are normal drive only. For details refer to SK3K144_IO_Signal_Description_Input_Multiplexing.xlsx attached with the Reference Manual.
- 7. Measured at input $V = V_{SS}$
- 8. Measured at input $V = V_{DD}$

5.5 AC electrical specifications at 3.3 V range

Table 11. AC electrical specifications at 3.3 V Range

Symbol	DSE	Rise tir	ne (nS) ¹	Fall tim	ne (nS) ¹	Capacitance (pF) ²
		Min.	Max.	Min.	Max.	
Standard	NA	4.6	14.5	3.9	15.7	25
		7.2	23.7	6.2	26.2	50
		24.0	75.4	20.8	88.4	200
Strong	0	4.6	14.5	3.9	15.7	25
		7.2	23.7	6.2	26.2	50
		24.0	75.4	20.8	88.4	200
	1	2.0	5.8	1.8	6.1	25
		2.8	8.0	2.6	8.3	50
		7.0	20.7	6.0	22.4	200

- 1. For reference only. Run simulations with the IBIS model and your custom board for accurate results.
- Maximum capacitances supported on Standard IOs. However interface or protocol specific specifications might be different, for example for ENET, QSPI etc. . For protocol specific AC specifications, see respective sections.

5.6 AC electrical specifications at 5 V range

Table 12. AC electrical specifications at 5 V Range

Symbol	DSE	Rise tii	me (nS) ¹	Fall tim	ne (nS) ¹	Capacitance (pF) ²
		Min.	Max .	Min.	Max.	
Standard	NA	3.2	9.4	3.6	10.7	25
		5.4	15.7	5.1	17.4	50
		18.5	52.6	17.6	59.7	200
Strong	0	4.0	9.4	3.6	10.7	25
		5.8	15.7	5.1	17.4	50
		18.1	52.6	17.6	59.7	200
	1	1.6	4.6	1.5	5.0	25
		2.2	5.7	2.2	5.8	50
		5.6	14.6	5.0	15.4	200

- 1. For reference only. Run simulations with the IBIS model and your custom board for accurate results.
- 2. Maximum capacitances supported on Standard IOs. However interface or protocol specific specifications might be different, for example for ENET, QSPI etc. . For protocol specific AC specifications, see respective sections.

5.7 Standard input pin capacitance

Table 13. Standard input pin capacitance

Symbol	Description	Min.	Max.	Unit
C _{IN_D}	Input capacitance: digital pins	_	7	pF

NOTE

Please refer to External System Oscillator electrical specifications for EXTAL/XTAL pins.

5.8 Device clock specifications

Table 14. Device clock specifications 1

Symbol	Description	Min.	Max.	Unit				
	High Speed run mode ²							
f _{SYS}	System and core clock	_	112	MHz				
f _{BUS}	Bus clock	_	56	MHz				
f _{FLASH}	Flash clock	_	28	MHz				
	Normal run mode (S32K11x series)							

Table 14. Device clock specifications 1 (continued)

Symbol	Description	Min.	Max.	Unit
f _{SYS}	System and core clock	_	48	MHz
f _{BUS}	Bus clock	_	24	MHz
f _{FLASH}	Flash clock	_	24	MHz
	Normal run mode (S32K14x series)	3		
f _{SYS}	System and core clock	_	80	MHz
f _{BUS}	Bus clock	_	40	MHz
f _{FLASH}	Flash clock	_	26.67	MHz
	VLPR mode ⁴			
f _{SYS}	System and core clock	_	4	MHz
f _{BUS}	Bus clock	_	4	MHz
f _{FLASH}	Flash clock	_	1	MHz
f _{ERCLK}	External reference clock	_	16	MHz

^{1.} Refer to the section Feature comparison for the availability of modes and other specifications.

6 Peripheral operating requirements and behaviors

6.1 System modules

There are no electrical specifications necessary for the device's system modules.

6.2 Clock interface modules

6.2.1 External System Oscillator electrical specifications

^{2.} Only available on some devices. See section Feature comparison.

^{3.} With SPLL as system clock source.

^{4.} The frequency limitations in VLPR mode here override any frequency specification listed in the timing specification for any other module.

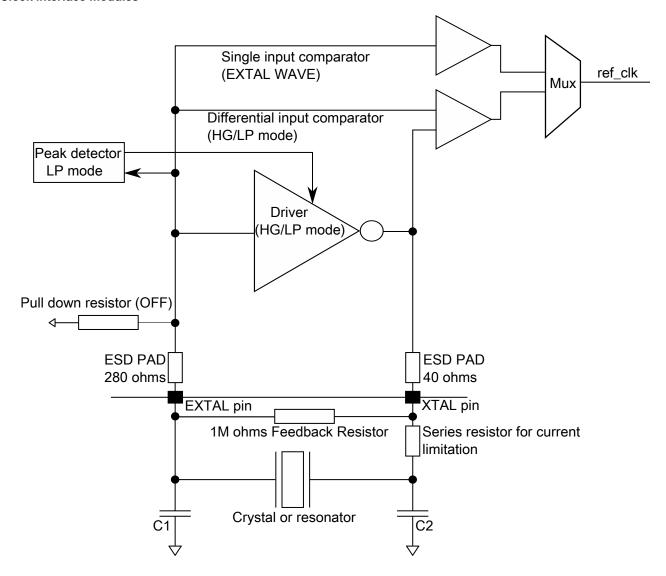


Figure 8. Oscillator connections scheme

Table 15. External System Oscillator electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
g _m xosc	Crystal oscillator transconductance					
	4-8 MHz	2.2	_	13.7	mA/V	
	8-40 MHz	16	_	47	mA/V	
V _{IL}	Input low voltage — EXTAL pin in external clock mode	V _{SS}	_	0.35 * V _{DD}	V	
V _{IH}	Input high voltage — EXTAL pin in external clock mode	0.7 * V _{DD}	_	V _{DD}	V	
C ₁	EXTAL load capacitance	_	_	_		1
C ₂	XTAL load capacitance	_	_	_		1
R _F	Feedback resistor					
	Low-gain mode (HGO=0)	_	_	_	MΩ	

Table 15. External System Oscillator electrical specifications (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	High-gain mode (HGO=1)	_	1	_	ΜΩ	
R _S	Series resistor					
	Low-gain mode (HGO=0)	_	0	_	kΩ	
	High-gain mode (HGO=1)	_	0	_	kΩ	
V _{pp}	Peak-to-peak amplitude of oscillation (oscillator mode)					3
	Low-gain mode (HGO=0)	_	1.0	_	V	
	High-gain mode (HGO=1)	_	3.3	_	V	

1. Crystal oscillator circuit provides stable oscillations when $g_{mXOSC} > 5 * gm_crit$. The gm_crit is defined as:

$$gm_crit = 4 * ESR * (2\pi F)^2 * (C_0 + C_L)^2$$

where:

2.

- g_{mXOSC} is the transconductance of the internal oscillator circuit
- ESR is the equivalent series resistance of the external crystal
- F is the external crystal oscillation frequency
- C₀ is the shunt capacitance of the external crystal
- C_L is the external crystal total load capacitance. $C_L = C_s + [C_1 * C_2 / (C_1 + C_2)]$
- C_s is stray or parasitic capacitance on the pin due to any PCB traces
- C₁, C₂ external load capacitances on EXTAL and XTAL pins

See manufacture datasheet for external crystal component values

- When low-gain is selected, internal R_F will be selected and external R_F should not be attached.
 - When high-gain is selected, external R_F (1 M Ohm) needs to be connected for proper operation of the crystal. For external resistor, up to 5% tolerance is allowed.
- The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other devices.

6.2.2 External System Oscillator frequency specifications Table 16. External System Oscillator frequency specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{osc_hi}	Oscillator crystal or resonator frequency	4	_	40	MHz	
f _{ec_extal}	Input clock frequency (external clock mode)	_	_	50	MHz	
t _{dc_extal}	Input clock duty cycle (external clock mode)	40	50	60	%	
t _{cst}	Crystal Start-up Time					
	8 MHz low-gain mode (HGO=0)	_	1.5	_	ms	1
	8 MHz high-gain mode (HGO=1)	_	2.5	_		
	40 MHz low-gain mode (HGO=0)	_	2	_		
	40 MHz high-gain mode (HGO=1)	_	2	_		

1. Proper PC board layout procedures must be followed to achieve specifications.