

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



# Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China









#### Is Now Part of



# ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <a href="https://www.onsemi.com">www.onsemi.com</a>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, emplo



June 2011

# FSA203 — Multimedia High-Speed USB, Video, and Negative Swing Audio Switch with Video Amp/Filter

#### **Features**

- USB: 3.5Ω Typical On Resistance
- Video/Mic: 3Ω Typical On Resistance
- Audio: 3.5Ω Typical On Resistance
- USB: -3db Bandwidth at 0pF > 745MHz
- Video: -3db Bandwidth > 615MHz
- Video: 1.0db Flatness > 6MHz
- Low-Power Shutdown Mode: 1µA Maximum
- Power-Off Protection on Common D+/R, D-/L, Video/Microphone Ports
- Packaged in Pb-free 20-Lead DQFN

# **Applications**

- Cell Phone, PDA, Digital Camera, and Notebook
- LCD Monitor, TV, and Set-Top Box

### Description

The FSA203 is a multimedia device that includes a Double-Pole, Double Throw (DPDT) USB / audio multiplexer, a video/microphone switch, and a video amplifier / filter path. The DPDT path combines a low-distortion audio and a USB2.0 switch path.

This configuration enables audio and USB data to share a common connector port. The architecture is designed such that audio signals are allowed to swing below ground, enabling the use of a common USB and headphone connector for personal media players and similar portable peripheral devices.

The FSA203 includes a power-off feature to minimize current consumption when  $V_{av}$  or  $V_{bus}$  is not present. This power-off circuitry is available for the common D+/R, D-/L ports only.

Typical applications involve switching in portables and consumer applications, such as cell phones, digital cameras, and notebooks with hubs or controllers.

#### **IMPORTANT NOTE:**

For additional performance information, please contact <a href="mailto:analogswitch@fairchildsemi.com">analogswitch@fairchildsemi.com</a>.

## **Ordering Information**

| Part Number | Top Mark | Package                                                                                |
|-------------|----------|----------------------------------------------------------------------------------------|
| FSA203BQX   | 203      | 20-Lead Depopulated very thin Quad Flat-pack No leads (DQFN) JEDEC MO-241, 2.5 x 4.5mm |

#### **Diagrams**

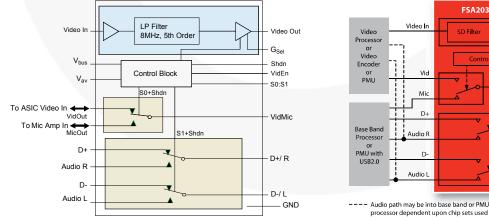



Figure 1. Functional Block Diagram

Figure 2. Typical Application Diagram

D+/I

# **Pin Assignments**

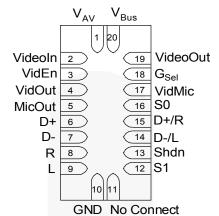



Figure 3. DQFN-20 (Top Through View)

# **Pin Descriptions**

| Pin#   | Name             | Description                                          |
|--------|------------------|------------------------------------------------------|
| 1      | V <sub>av</sub>  | Audio/Video Power Supply                             |
| 2      | Video In         | Video Input Source                                   |
| 3      | VidEn            | Video Output Buffer Enable (Active High)             |
| 4      | VidOut           | Video Connection to ADC                              |
| 5      | MicOut           | Microphone Pre-Amp Connection                        |
| 6, 7   | D+, D-           | USB Data Bus Input sources                           |
| 8.9    | R, L             | Audio Right and Left Input sources                   |
| 10     | GND              | Ground                                               |
| 11     | NC               | No Connect                                           |
| 12,16  | S1, S0           | Switch Control Pins                                  |
| 13     | Shdn             | Shutdown Control Pin                                 |
| 14, 15 | D-/L, D+/R       | USB/Audio Common Connector Ports                     |
| 17     | VidMic           | Video / Microphone Common Connector Port             |
| 18     | G <sub>Sel</sub> | Gain Select (0dB/6dB); G <sub>Sel</sub> = High = 6dB |
| 19     | Video Out        | Buffered/Filtered Video Out                          |
| 20     | V <sub>bus</sub> | USB V <sub>bus</sub> Supply                          |

# **Truth Table**

| Shdn | VidEn | S0   | S1   | D+/R | D-/L | Vid/Mic | Video Out |
|------|-------|------|------|------|------|---------|-----------|
| LOW  | LOW   | LOW  | LOW  | D+   | D-   | VidOut  | Off       |
| LOW  | LOW   | LOW  | HIGH | R    | L    | VidOut  | Off       |
| LOW  | LOW   | HIGH | LOW  | D+   | D-   | MicOut  | Off       |
| LOW  | LOW   | HIGH | HIGH | R    | L    | MicOut  | Off       |
| LOW  | HIGH  | LOW  | LOW  | D+   | D-   | VidOut  | On        |
| LOW  | HIGH  | LOW  | HIGH | R    | L    | VidOut  | On        |
| LOW  | HIGH  | HIGH | LOW  | D+   | D-   | MicOut  | On        |
| LOW  | HIGH  | HIGH | HIGH | R    | L    | MicOut  | On        |
| HIGH | Х     | Х    | Х    | Hi-Z | Hi-Z | Hi-Z    | Off       |

## **Absolute Maximum Ratings**

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

| Symbol                             | Parameter                                          |                                          | Min.                 | Max.                 | Unit |
|------------------------------------|----------------------------------------------------|------------------------------------------|----------------------|----------------------|------|
| V <sub>AV</sub> / V <sub>Bus</sub> | Supply Voltage                                     |                                          | -0.5                 | 6.0                  | V    |
|                                    | Switch I/O Voltage <sup>(1)</sup>                  | D+, D-, D+/R, D-/L<br>Pins               | V <sub>AV</sub> -5.5 | V <sub>AV</sub> -0.3 | V    |
| $V_{\text{SW}}$                    | Switch I/O Voltage                                 | R, L, VidOut, MicOut,<br>VidMic Pins     | V <sub>AV</sub> -5.5 | V <sub>AV</sub> -0.3 | V    |
| V <sub>VideoIn</sub>               | Control Input Voltage                              |                                          | -0.5                 | 6.0                  | V    |
| V <sub>VideoOut</sub>              | Control Output Voltage                             |                                          | -0.5                 | 6.0                  | V    |
| V <sub>CNTRL</sub>                 | Control Input Voltage <sup>(1)</sup> S0: S1 VidEn, | Shdn                                     | -0.5                 | 6.0                  | V    |
| I <sub>Video</sub>                 | Video Out Current                                  |                                          |                      | 16                   | mA   |
| I <sub>IK</sub>                    | Input Clamp Diode Current                          |                                          | -50                  |                      | mA   |
|                                    |                                                    | USB D+, D-                               |                      | 20                   |      |
| I <sub>SW</sub>                    | Switch I/O Current (Continuous)                    | R, L, D+/R, D-/L                         |                      | 50                   | mA   |
| 1500                               | Switch in Guinem (Communication)                   | VidOut, MicOut,<br>VidMic                |                      | 50                   | ША   |
|                                    |                                                    | USB D+, D-                               |                      | 100                  |      |
| I <sub>SWPEAK</sub>                | Peak Switch Current (Pulsed at 1ms                 | R, L, D+/R, D-/L                         |                      | 250                  | mA   |
| ISWPEAK                            | Duration, <10% Duty Cycle)                         | VidOut, MicOut,<br>VidMic                |                      | 250                  | ША   |
| T <sub>STG</sub>                   | Storage Temperature Range                          |                                          | -65                  | +150                 | °C   |
| TJ                                 | Maximum Junction Temperature                       |                                          |                      | +150                 | °C   |
| TL                                 | Lead Temperature (Soldering, 10 second             | onds)                                    |                      | +260                 | °C   |
|                                    |                                                    | I/O to GND                               |                      | 5.5                  |      |
| 505                                | Human Body Model<br>(JEDEC: JESD22-A114)           | All other pins                           |                      | 6.5                  | kV   |
| ESD                                | (02020. 020022 / (114)                             | V <sub>AV</sub> /V <sub>Bus</sub> to GND |                      | 12.0                 |      |
|                                    | Charged Discharge Model (JEDEC: J                  | ESD22-C101)                              |                      | 2.0                  | kV   |

#### Note:

# **Recommended Operating Conditions**

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

| Symbol                | Parameter             | Min.                 | Max.                 | Unit |
|-----------------------|-----------------------|----------------------|----------------------|------|
| V <sub>AV</sub>       | Supply Voltage        | 3.0                  | 3.6                  | V    |
| V <sub>Bus</sub>      | Supply Voltage        | 4.25                 | 5.5                  | V    |
| V <sub>Videoln</sub>  | Video Input Voltage   | 0                    | $V_{AV}$             | V    |
| V <sub>VideoOut</sub> | Video Output Voltage  | 0                    | V <sub>AV</sub>      | V    |
| V <sub>CNTRL</sub>    | Control Input Voltage | 0                    | $V_{AV}$             | V    |
| $V_{SW}$              | Switch I/O Voltage    | V <sub>AV</sub> -5.5 | V <sub>AV</sub> -0.3 |      |
| T <sub>A</sub>        | Operating Temperature | -40                  | 85                   | °C   |

<sup>1.</sup> The input and output negative ratings may be exceeded if the input and output diode current ratings are

## **DC Electrical Characteristics**

All typical values are at 25°C unless otherwise specified.

| Cumbal                      | Doromotor                                                             | Conditions                                                                                                          | V <sub>AV</sub> /V <sub>Bus</sub>                             | T <sub>A</sub> = - 4  | 40°C to | +85°C           | Unit |
|-----------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------|---------|-----------------|------|
| Symbol                      | Parameter                                                             | Conditions                                                                                                          | (V)                                                           | Min.                  | Тур.    | Max.            | Unit |
| $V_{\text{IK}}$             | Clamp Diode Voltage                                                   | I <sub>IK</sub> = -18mA                                                                                             | $V_{AV} = 3.0V$<br>$V_{Bus} = 0V$                             |                       |         | -1.2            | V    |
| $V_{\text{IH}}$             | Control Input Voltage<br>HIGH                                         |                                                                                                                     | $V_{AV} = 3.0 \text{ to}  3.6V  V_{Bus} = 5.5V$               | 1.3                   |         |                 | V    |
| $V_{\text{IL}}$             | Control Input Voltage<br>LOW                                          |                                                                                                                     | $V_{AV} = 3.0 \text{ to}$<br>3.6V<br>$V_{Bus} = 5.5 \text{V}$ |                       |         | 0.5             | V    |
| I <sub>IN</sub>             | Control Input Current                                                 | V <sub>CNTRL</sub> = 0 to 3.6V                                                                                      | V <sub>AV</sub> = 3.0 to<br>3.6V<br>V <sub>Bus</sub> = 5.5V   | -1                    |         | 1               | μΑ   |
| I <sub>OFF</sub>            | Power Off Leakage<br>Current (Common Port<br>Only D+/R, D-/L, VidMic) | Common Ports (D+/R,D-/L);<br>V <sub>SW</sub> = 0 to 5.5V<br>See Figure 15                                           | V <sub>AV</sub> = 0V<br>V <sub>Bus</sub> = 0V                 |                       |         | 500             | nA   |
| loz(off)                    | Off Leakage Current of<br>Ports D+, D-, R, L,<br>MicOut, VidOut)      | Ports (D+/R, D-/L = 0.3V,<br>$V_{AV}$ – 0.3V, D+, D-, R, L =<br>0.3V, $V_{AV}$ – 0.3V or Floating)<br>See Figure 15 | $V_{AV} = 0V$ $V_{Bus} = 0V$                                  |                       |         | 500             | nA   |
| I <sub>NC(0N)</sub>         | On-Leakage Current of<br>Ports D+/R, D-/L or<br>VidMic                | Ports (D+/R, D-/L = 0.3V,<br>$V_{AV}$ – 0.3V, D+, D-, R, L =<br>0.3V, $V_{AV}$ – 0.3V or Floating)<br>See Figure 16 | V <sub>AV</sub> = 3.6V<br>V <sub>Bus</sub> = 5.5V             | -100                  | 50      | 100             | nA   |
| USB Switch I                | Path                                                                  |                                                                                                                     |                                                               |                       |         |                 |      |
|                             | USB Analog Signal<br>Range <sup>(3)</sup>                             |                                                                                                                     |                                                               | 0                     |         | 3.6             | V    |
| R <sub>ONUSB</sub>          | Switch On Resistance <sup>(2)</sup>                                   | $V_{D+/D-}$ = 0V, 0.4V, $I_{ON}$ = -8mA<br>See Figure 5, Figure 14                                                  | $V_{AV} = 3.0V$<br>$V_{Bus} = 4.25V$                          |                       | 4       | 6               | Ω    |
| $\Delta R_{ONUSB}$          | Delta On Resistance <sup>(3)</sup>                                    | $V_{D+/D-} = 0V, 0.4V,$<br>$I_{ON} = -8mA$                                                                          | $V_{AV} = 3.0V$<br>$V_{Bus} = 4.25V$                          |                       | 0.35    |                 | Ω    |
| R <sub>FLAT(ON)USB</sub>    | R <sub>ON</sub> Flatness <sup>(4)</sup>                               | $V_{D+/D-} = 0V, 0.4V,$<br>$I_{ON} = -8mA$                                                                          | $V_{AV} = 3.0V$<br>$V_{Bus} = 4.25V$                          | 1.0                   |         | 2.5             | Ω    |
| Audio R/L Sv                | vitch Path                                                            |                                                                                                                     |                                                               |                       |         | 7               |      |
|                             | Audio Analog Signal<br>Range <sup>(3)</sup>                           |                                                                                                                     |                                                               | V <sub>AV</sub> – 5.5 |         | V <sub>AV</sub> | V    |
| Ronaudio                    | Switch On Resistance <sup>(2)</sup>                                   | $V_{L/R}$ = 0V, 0.7V; $V_{AV}$ = 0.7V, $V_{AV}$ ; $I_{ON}$ = -20mA; $V_{Bus}$ = 0V See Figure 4, Figure 14          | V <sub>AV</sub> = 3.0V<br>V <sub>Bus</sub> = 0V               |                       | 3.5     | 5.5             | Ω    |
| $\Delta R_{ONAudio}$        | Delta On Resistance <sup>(3)</sup>                                    | $V_{L/R} = 0V, 0.7V;$<br>$I_{ON} = -20mA$                                                                           | $V_{AV} = 3.0V$<br>$V_{Bus} = 0V$                             | 0.10                  |         | 0.35            | Ω    |
| R <sub>FLAT(ON)</sub> Audio | R <sub>ON</sub> Flatness <sup>(4)</sup>                               | V <sub>L/R</sub> = 0V, 0.7V;<br>I <sub>ON</sub> = -20mA                                                             | $V_{AV} = 3.0V$<br>$V_{Bus} = 0V$                             |                       | 0.5     | 2.5             | Ω    |

Continued on the following page...

### **DC Electrical Characteristics** (Continued)

All typical values are at 25°C unless otherwise specified.

| Symbol                | Parameter                                 | Conditions                                                               | V <sub>AV</sub> /V <sub>Bus</sub> (V)             | T <sub>A</sub> :         | = - 40°C<br>+85°C  | to              | Unit            |
|-----------------------|-------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------|--------------------------|--------------------|-----------------|-----------------|
|                       |                                           |                                                                          | Jus ( )                                           | Min.                     | Тур.               | Max.            |                 |
| VidMic Swite          | ch Path                                   |                                                                          |                                                   |                          | •                  |                 |                 |
|                       | Audio Analog Signal Range <sup>(3)</sup>  |                                                                          |                                                   | V <sub>AV</sub> -<br>5.5 |                    | V <sub>AV</sub> | ٧               |
| R <sub>ONVidMic</sub> | Video Switch On Resistance <sup>(2)</sup> | $V_{Vid/Mic}$ = 0V, 0.7V;<br>$I_{ON}$ = -13mA<br>See Figure 6, Figure 14 | V <sub>AV</sub> = 3.0V<br>V <sub>Bus</sub> = 0V   |                          | 3                  | 6               | Ω               |
| Video Buffer          | r Path                                    |                                                                          |                                                   |                          |                    |                 |                 |
| V <sub>INV</sub>      | Video Input Voltage Range                 |                                                                          | V <sub>AV</sub> = 3.0V<br>V <sub>Bus</sub> = 0V   |                          | 1.2V <sub>pp</sub> |                 | V <sub>pp</sub> |
| V <sub>OLS</sub>      | Output Level Shift                        | $V_{VideoIn}$ = 0V; $R_S$ = 37.5 $\Omega$ AC Coupled into 150 $\Omega$   | V <sub>AV</sub> = 3.0V<br>V <sub>Bus</sub> = 0V   |                          | 250                |                 | mV              |
| R <sub>OUTVID</sub>   | Video Output Impedance <sup>(3)</sup>     |                                                                          | V <sub>AV</sub> = 3.6V<br>V <sub>Bus</sub> = 0V   |                          | 2.5                |                 | kΩ              |
| Power Supp            | oly                                       |                                                                          |                                                   |                          |                    |                 |                 |
| I <sub>CC(AV)</sub>   | Quiescent Supply Current                  | V <sub>CNTRL</sub> = 0V to V <sub>AV</sub><br>I <sub>OUT</sub> = 0       | V <sub>AV</sub> = 3.6V<br>V <sub>Bus</sub> = 0V   | V                        | 4.5                | 6.4             | mA              |
| I <sub>CC(VBus)</sub> | Quiescent Supply Current                  | V <sub>CNTRL</sub> = 0V to V <sub>AV</sub><br>I <sub>OUT</sub> = 0       | V <sub>AV</sub> = 3.0V<br>V <sub>Bus</sub> = 5.5V |                          |                    | 20              | μA              |
| I <sub>SHDN</sub>     | Shutdown Current                          |                                                                          | V <sub>AV</sub> = 3.6V<br>V <sub>Bus</sub> = 0V   |                          | .050               | 0.100           | μA              |
|                       | Increase in I <sub>CC</sub> per Control   | V <sub>CNTRL</sub> = 1.8V                                                | V <sub>AV</sub> = 3.6V<br>V <sub>Bus</sub> = 0V   |                          |                    | 18              | μA              |
| I <sub>CCT</sub>      | Voltage and V <sub>AV</sub>               | V <sub>CNTRL</sub> = 2.6V                                                | V <sub>AV</sub> = 3.6V<br>V <sub>Bus</sub> = 0V   |                          |                    | 15              | μА              |

#### Notes:

- 2. R<sub>ON</sub> measured by the voltage drop between 1Bn (2Bn) and 1A (2A) pins at identical current through the switch. R<sub>ON</sub> is determined by the lower of the voltage on the two pins.
- 3. Guaranteed by characterization, not production tested.
- 4. Flatness is defined as the difference between the maximum and minimum values of on resistance over the specified range of conditions.

# **AC Electrical Characteristics**

All typical value are for  $V_{AV}$  = 3.3V,  $V_{BUS}$  = 5.0V, and at 25°C unless otherwise specified.

| Symbol                | Parameter                                   | Conditions                                                                                          | V <sub>AV</sub> /V <sub>Bus</sub> (V)              | T <sub>A</sub> | = - 40°<br>+85°C |      | Unit |
|-----------------------|---------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------|------------------|------|------|
| •                     |                                             |                                                                                                     | Av Bus ( )                                         | Min.           | Тур.             | Max. |      |
| t <sub>ONAudio</sub>  | Turn-On Time<br>S1 or Shdn to Output        | $V_{D+/R, D-/L} = 0.8V$<br>$R_L = 50\Omega, C_L = 5pF$<br>See Figure 17, Figure 18                  | V <sub>AV</sub> = 3.0V<br>V <sub>Bus</sub> = 0V    |                | 25               | 45   | ns   |
| toffAudio             | Turn-Off Time<br>S1 or Shdn to Output       | $V_{D+/R, D-/L} = 0.8V$<br>$R_L = 50\Omega$ , $C_L = 5pF$<br>See Figure 17, Figure 18               | V <sub>AV</sub> = 3.0V<br>V <sub>Bus</sub> = 0V    |                | 22               | 30   | ns   |
| t <sub>ONUSB</sub>    | Turn-On Time<br>S1 or Shdn to Output        | $V_{D+/R, D-/L} = 0.8V$<br>$R_L = 50\Omega$ , $C_L = 5pF$<br>See Figure 17, Figure 18               | $V_{AV} = 3.0V$<br>$V_{Bus} = 4.25V$               |                | 31               | 40   | ns   |
| toffusb               | Turn-Off Time<br>S1 or Shdn to Output       | $V_{D+/R, D-/L} = 0.8V$<br>$R_L = 50\Omega$ , $C_L = 5pF$<br>See Figure 17, Figure 18               | $V_{AV} = 3.0V$<br>$V_{Bus} = 4.25V$               |                | 12               | 25   | ns   |
| t <sub>PDUSB</sub>    | USB Switch Propagation Delay <sup>(5)</sup> | $R_L = 50\Omega$ , $C_L = 5pF$<br>See Figure 19                                                     | $V_{AV} = 3.0V$<br>$V_{Bus} = 4.25V$               |                | 0.25             |      | ns   |
| O <sub>IRRUSB</sub>   | Off-Isolation – USB                         | $f$ = 1MHz, $R_T$ = 50 $\Omega$ , $C_L$ = 5pF See Figure 7, Figure 21                               | V <sub>AV</sub> = 3.0V<br>V <sub>Bus</sub> = 4.25V |                | -80              |      | dB   |
| O <sub>IRRA</sub>     | Off-Isolation – Audio                       | $f$ = 20kHz, $R_T$ = 50 $\Omega$ ,<br>$C_L$ = 5pF<br>See Figure 8, Figure 21                        | $V_{AV} = 3.0V$<br>$V_{Bus} = 4.25V$               |                | -100             |      | dB   |
| Xtalk <sub>USB</sub>  | Non-Adjacent Channel<br>Crosstalk – USB     | f = 1MHz, $R_L$ = 50Ω<br>See Figure 9, Figure 22                                                    | $V_{AV} = 3.0V$<br>$V_{Bus} = 4.25V$               |                | -80              |      | dB   |
| Xtalk <sub>A</sub>    | Non-Adjacent Channel<br>Crosstalk – Audio   | $f = 20$ kHz, $R_L = 50Ω$<br>See Figure 10, Figure 22                                               | $V_{AV} = 3.0V$<br>$V_{Bus} = 4.25V$               |                | -80              |      | dB   |
| BWusa                 | -3db Bandwidth - USB                        | $R_T$ = 50 $\Omega$ , $C_L$ = 0pF, Signal 0dBm See Figure 11, Figure 20                             | $V_{AV} = 3.0V$<br>$V_{Bus} = 4.25V$               |                | 780              |      | MHz  |
| DVVUSB                | -Sub Bariuwiutii - USB                      | $R_T$ = 50 $\Omega$ , $C_L$ = 5pF, Signal 0dBm See Figure 11, Figure 20                             | $V_{AV} = 3.0V$<br>$V_{Bus} = 4.25V$               |                | 450              |      | MHz  |
| THD                   | Total Harmonic Distortion                   | R <sub>L</sub> = 32Ω                                                                                | $V_{AV} = 3.0V$<br>$V_{Bus} = 0V$                  |                | 0.01             |      | %    |
| PSRR <sub>Audio</sub> | Power Supply Rejection<br>Ratio             | $V_{R,L}$ = 0.8V; $R_T$ = 32 $\Omega$ ;<br>f=217Hz on $V_{AV}$ at<br>600m $V_{pp}$<br>See Figure 25 | V <sub>AV</sub> = 3.0V<br>V <sub>Bus</sub> = 0V    |                | 40               | 6    | dB   |

Continued on the following page...

# **AC Electrical Characteristics** (Continued)

All typical value are for  $V_{AV}$  = 3.3V,  $V_{BUS}$  = 5.0V, and at 25°C unless otherwise specified.

| Cumbal                  | Doromatan                                     | Conditions                                                                                             | V N/ AA                                            | T <sub>A</sub> = - | 40°C to | +85°C | 11   |
|-------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------|---------|-------|------|
| Symbol                  | Parameter                                     | Conditions                                                                                             | V <sub>AV</sub> /V <sub>Bus</sub> (V)              | Min.               | Тур.    | Max.  | Unit |
| VidMic Swite            | ch                                            |                                                                                                        | •                                                  |                    |         |       |      |
| t <sub>ON</sub>         | Turn-On Time<br>S1 or Shdn to Output          | $V_{VidMic}$ = 0.8V<br>R <sub>L</sub> = 75 $\Omega$ , C <sub>L</sub> = 5pF<br>See Figure 17, Figure 18 | V <sub>AV</sub> = 3.0V<br>V <sub>Bus</sub> = 0V    |                    | 35      | 50    | ns   |
| t <sub>OFF</sub>        | Turn-Off Time<br>S1 or Shdn to Output         | $V_{VidMic}$ = 0.8V<br>R <sub>L</sub> = 75 $\Omega$ , C <sub>L</sub> = 5pF<br>See Figure 17, Figure 18 | $V_{AV} = 3.0V$<br>$V_{Bus} = 0V$                  |                    | 15      | 35    | ns   |
| $BW_{VidMic}$           | -3db Bandwidth                                | $R_T$ = 50 $\Omega$ , $C_L$ = 0pF, Signal 0dBm See Figure 12, Figure 20                                | $V_{AV} = 3.0V$<br>$V_{Bus} = 0V$                  |                    | 615     |       | MHz  |
| DVVVidMic               | -Sub balluwidili                              | $R_T$ = 50 $\Omega$ , $C_L$ = 5pF, Signal 0dBm See Figure 12, Figure 20                                | $V_{AV} = 3.0V$<br>$V_{Bus} = 0V$                  |                    | 400     |       | MHz  |
| Xtalk <sub>VidMic</sub> | Non-Adjacent Channel<br>Crosstalk – VidMic    | $f = 30MHz$ , $R_L = 50Ω$<br>See Figure 22                                                             | V <sub>AV</sub> = 3.0V<br>V <sub>Bus</sub> = 0V    |                    | -35     |       | dB   |
| Video Buffe             | r Path                                        |                                                                                                        | •                                                  |                    |         |       |      |
| t <sub>VidEn</sub>      | Turn-On Time<br>VidEn or Shdn to<br>VideoOut  | $V_{Videoln} = 0.5V$<br>R <sub>S</sub> = 37.5 $\Omega$                                                 | $V_{AV} = 3.0V$<br>$V_{Bus} = 0V$                  |                    | 325     |       | μs   |
| t√idDis                 | Turn-Off Time<br>VidEn or Shdn to<br>VideoOut | $V_{Videoln} = 0.5V$<br>R <sub>S</sub> = 37.5 $\Omega$                                                 | V <sub>AV</sub> = 3.0V<br>V <sub>Bus</sub> = 0V    |                    | 20      |       | ns   |
| A <sub>V6dB</sub>       | Voltage Gain                                  | $R_S$ = 37.5Ω; AC Coupled into 150Ω                                                                    | V <sub>AV</sub> = 3.0 to<br>4.3V                   |                    | 6       |       | dB   |
| BW <sub>1dB</sub>       | -1db Bandwidth                                | See Figure 13, Figure 26                                                                               | V <sub>AV</sub> = 3.0V<br>V <sub>Bus</sub> = 5.0V  |                    | 8       |       | MHz  |
| BW <sub>3dB</sub>       | -3db Bandwidth                                | See Figure 13, Figure 26                                                                               | $V_{AV} = 3.0V$<br>$V_{Bus} = 5.0V$                |                    | 9       |       | MHz  |
| $F_SB$                  | Attenuation                                   | $R_S$ = 37.5 $\Omega$ ; AC Coupled into 150 $\Omega$ ; f=27MHz Referenced to 100kHz, VideoIn = 0dBm    | V <sub>AV</sub> = 3.0V<br>V <sub>Bus</sub> = 5.0V  |                    | -42     |       | dB   |
| PSRR <sub>Video</sub>   | Power Supply Rejection<br>Ratio               | See Figure 25                                                                                          | $V_{AV} = 3.3V$<br>$V_{Bus} = 0V$                  |                    | -40     |       | dB   |
| OIRR <sub>VidOut</sub>  | Off-Isolation – Video Out                     | See Figure 27                                                                                          | V <sub>AV</sub> = 3.0V<br>V <sub>Bus</sub> = 4.25V |                    | -50     |       | dB   |
| dG                      | Differential Gain                             | $R_S$ = 37.5Ω;<br>AC Coupled into 150Ω<br>See Figure 28                                                | V <sub>AV</sub> = 3.0V<br>V <sub>Bus</sub> = 0V    |                    | .5      | Ų     | %    |
| dφ                      | Differential Phase                            | $R_S$ = 37.5Ω;<br>AC Coupled into 150Ω<br>See Figure 28                                                | V <sub>AV</sub> = 3.0V<br>V <sub>Bus</sub> = 0V    |                    | .9      |       | 0    |
| SNR                     | Signal-to-Noise Ratio                         | NTSC-7 Weighting,<br>f=100kHz to 4.2MHz<br>See Figure 28                                               | V <sub>AV</sub> = 3.0V<br>V <sub>Bus</sub> = 0V    |                    | 75      |       | dB   |

# **USB High-Speed-Related AC Electrical Characteristics**

All typical value are for  $V_{AV}$  = 3.0V,  $V_{BUS}$  = 4.25V, and at 25°C unless otherwise specified.

| Cumbal             | Parameter                                                            | Conditions                                                                                      | V 0/ 00                                            | T <sub>A</sub> = - | 40°C to | +85°C | l lmi4 |
|--------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------|---------|-------|--------|
| Symbol             | Parameter                                                            | Conditions                                                                                      | V <sub>AV</sub> /V <sub>Bus</sub> (V)              | Min.               | Тур.    | Max.  | Unit   |
| t <sub>SK(o)</sub> | Channel-to-Channel<br>Skew <sup>(5)</sup>                            | $t_R$ = $t_F$ = 75ps (10-90%) at 240MHz; $C_L$ = 5pF, $R_L$ = 50 $\Omega$                       | V <sub>AV</sub> = 3.0V<br>V <sub>Bus</sub> = 4.25V |                    | 50      |       | ps     |
| t <sub>SK(P)</sub> | Skew of Opposite<br>Transitions of the Same<br>Output <sup>(5)</sup> | $t_R$ = $t_F$ = 75ps (10-90%) at 240MHz; $C_L$ = 5pF, $R_L$ = $50\Omega$                        | V <sub>AV</sub> = 3.0V<br>V <sub>Bus</sub> = 4.25V |                    | 50      |       | ps     |
| t <sub>J</sub>     | Total Jitter <sup>(5)</sup>                                          | $t_R = t_F = 75ps (10-90\%) at$ 480Mbps; $C_L = 5pF$ , $R_L = 50\Omega$ ; (PRBS = $2^{15}$ - 1) | V <sub>AV</sub> = 3.0V<br>V <sub>Bus</sub> = 4.25V |                    | 100     |       | ps     |

#### Note:

5. Guaranteed by characterization, not production tested.

# Capacitance

| Symbol                       | Parameter                                                  | Conditions                                                     | V <sub>AV</sub> /V <sub>Bus</sub> (V)                                            | T <sub>A</sub> = -40°C to<br>+85°C | Unit |
|------------------------------|------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------|------|
|                              |                                                            |                                                                |                                                                                  | Typical                            |      |
| C <sub>IN (CNTRL)</sub>      | Control Pin Input<br>Capacitance (S0, S1,<br>/Shdn, VidEn) | V <sub>BIAS</sub> = 0V                                         | V <sub>AV</sub> = 3.0V<br>V <sub>Bus</sub> = 4.25V                               | 2.75                               | pF   |
|                              | C <sub>D+/R, D-/L</sub> Source Port                        | V <sub>BIAS</sub> = 0.4V; f = 1MHz,<br>240Mhz<br>See Figure 24 | V <sub>AV</sub> = 3.0V<br>V <sub>Bus</sub> = 4.25V<br>S1 = 0V C <sub>ONUSB</sub> | 7.6                                | 5    |
| C <sub>ON</sub> (D+/R, D-/L) | On Capacitance                                             | V <sub>BIAS</sub> = 0V; f = 1MHz, 240Mhz<br>See Figure 24      | $V_{AV} = 3.0V$<br>$V_{Bus} = 4.25V$<br>S1 = 3.0V C <sub>ONAudio</sub>           | 9.7                                | рF   |
| C <sub>OFF(D+, D-)</sub>     | USB Source Off<br>Capacitance                              | V <sub>BIAS</sub> = 0.4V; f = 1MHz,<br>240Mhz<br>See Figure 23 | V <sub>AV</sub> = 3.0V<br>V <sub>Bus</sub> = 4.25V<br>S1 = 3.0V <sub>o</sub>     | 1.5                                | рF   |
| C <sub>OFF(R/L)</sub>        | Audio Source Off<br>Capacitance                            | V <sub>BIAS</sub> = 0V; f = 1MHz<br>See Figure 23              | V <sub>AV</sub> = 3.0V<br>V <sub>Bus</sub> = 4.25V<br>S1 = 0V                    | 3.0                                | pF   |
| Con(VidMic)                  | VidMic Source On<br>Capacitance                            | V <sub>BIAS</sub> = 0V; f = 1MHz<br>See Figure 24              | $V_{AV} = 3.0V$<br>$V_{Bus} = 4.25V$                                             | 10 (15 Max.)                       | pF   |
| Coff(MicOut)                 | MicOut Source Off<br>Capacitance                           | V <sub>BIAS</sub> = 0V; f = 1MHz<br>See Figure 23              | V <sub>AV</sub> = 3.0V<br>V <sub>Bus</sub> = 4.25V                               | 3.0                                | pF   |
| C <sub>OFF(VidOut)</sub>     | VidOut Source Off<br>Capacitance                           | V <sub>BIAS</sub> = 0V; f = 1MHz<br>See Figure 23              | V <sub>AV</sub> = 3.0V<br>V <sub>Bus</sub> = 4.25V                               | 2.7                                | pF   |

# **Typical Characteristics**

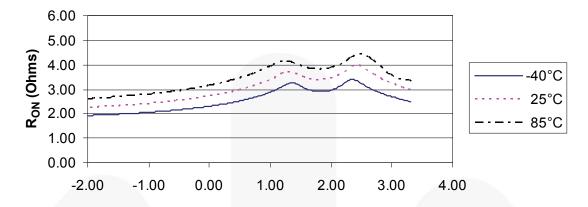



Figure 4. Ronaudio, VIN, VAV= 3.0V, VBus = 0V

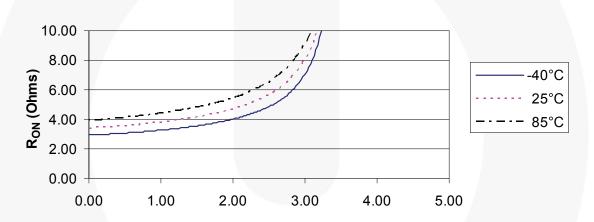
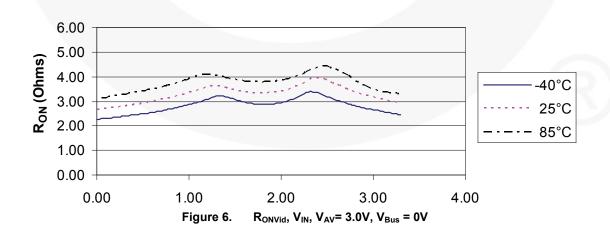




Figure 5.  $R_{ONUSB}$ ,  $V_{IN}$ ,  $V_{AV}$ = 3.0V,  $V_{Bus}$  = 4.25V



# Typical Characteristics (Continued)

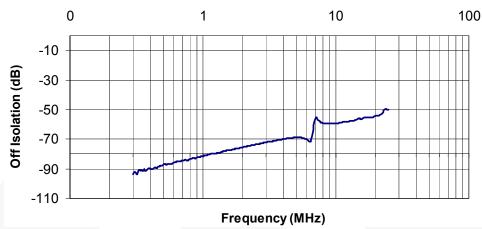



Figure 7. Off Isolation USB (OIRRUSB),  $V_{AV} = 3.0V$ ,  $V_{Bus} = 4.25V$ 

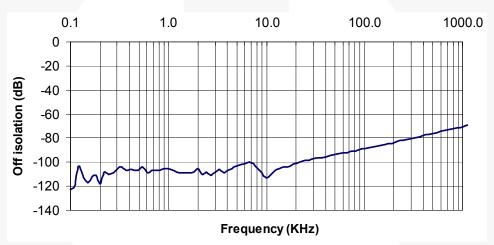



Figure 8. Off Isolation Audio (OIRRA),  $V_{AV} = 3.0V$ ,  $V_{Bus} = 4.25V$ 

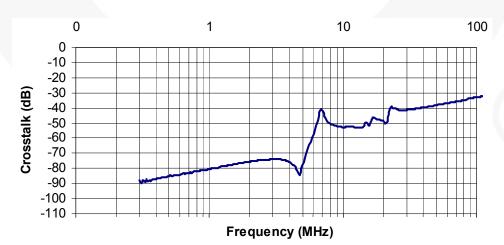



Figure 9. Non-Adjacent Crosstalk - USB,  $V_{AV}$ = 3.0V,  $V_{Bus}$  = 4.25V

# Typical Characteristics (Continued)

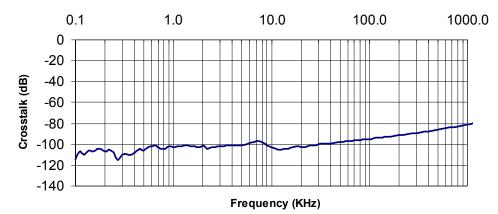



Figure 10. Non-Adjacent Crosstalk - Audio, V<sub>AV</sub>= 3.0V, V<sub>Bus</sub> = 4.25V

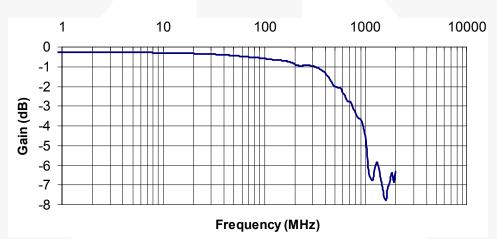



Figure 11. Bandwidth Gain vs. Frequency - USB, C<sub>L</sub> = 0pF, V<sub>AV</sub>= 3.0V, V<sub>Bus</sub> = 4.25V

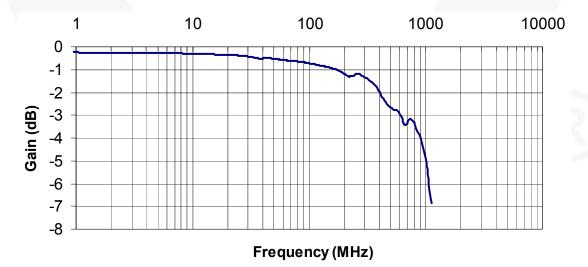



Figure 12. Bandwidth Gain vs. Frequency – VidMic, C<sub>L</sub> = 0pF, V<sub>AV</sub>= 3.0V, V<sub>Bus</sub> = 0V

# **Typical Characteristics** (Continued)

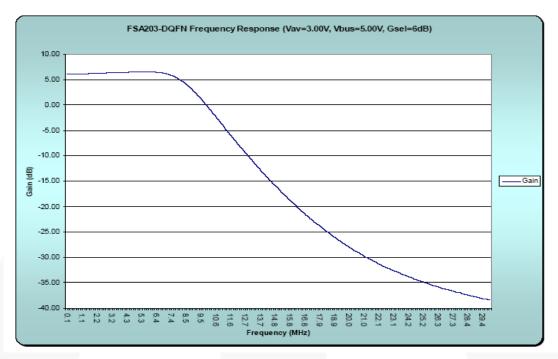



Figure 13. Video Buffer Frequency Response

### **Test Diagrams**

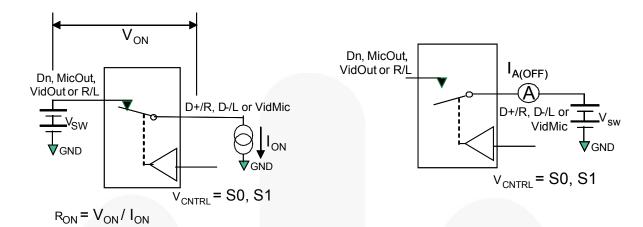
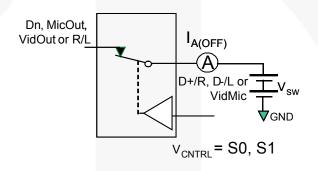
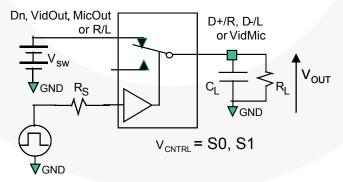
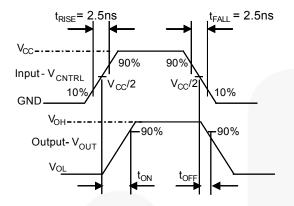



Figure 14. On Resistance

Figure 15. Off Leakage



Figure 16. On Leakage



 $R_L$ ,  $R_S$ , and  $C_L$  are functions of the application environment (see AC Tables for specific values)  $C_L$  includes test fixture and stray capacitance

Figure 17. AC Test Circuit Load

### Test Diagrams (Continued)



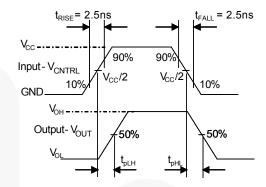



Figure 18. Turn-On / Turn-Off Waveforms

Figure 19. Switch Propagation Delay Waveforms

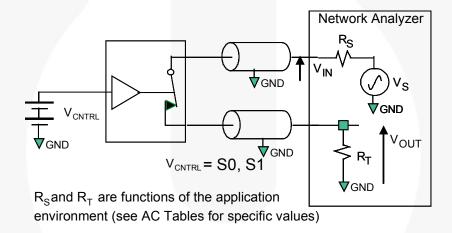



Figure 20. Switch Bandwidth

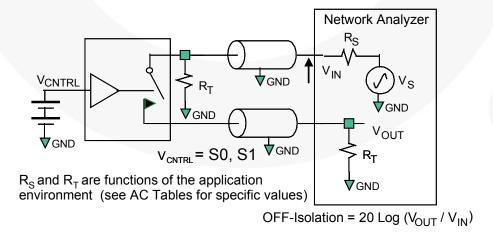



Figure 21. Channel Off Isolation

### Test Diagrams (Continued)

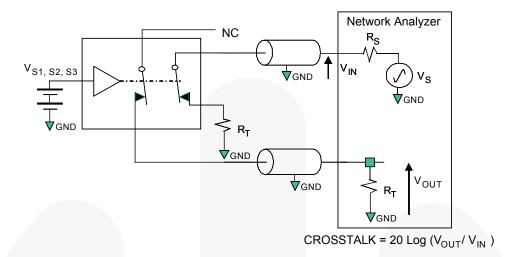



Figure 22. Non-Adjacent Channel-to-Channel Crosstalk

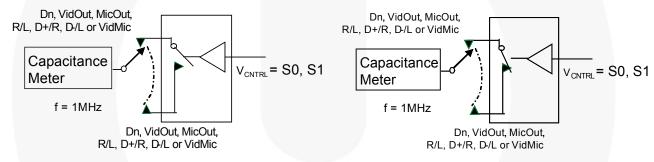



Figure 23. Channel Off Capacitance

Figure 24. Channel On Capacitance

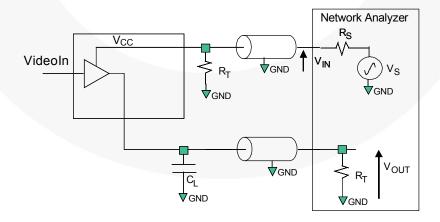
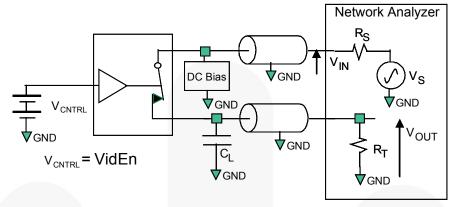




Figure 25. PSRR

### Test Diagrams (Continued)



R<sub>S</sub> and R<sub>T</sub> are functions of the application environment (see AC Tables for specific values)

Figure 26. Video Amplifier Bandwidth

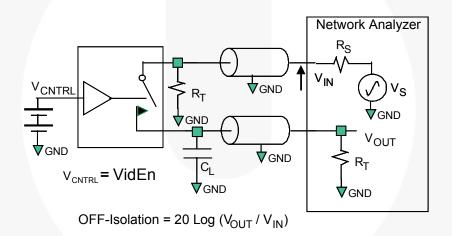



Figure 27. Video Amplifier Off Isolation

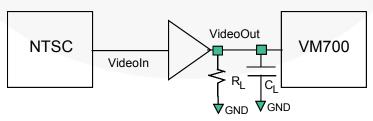
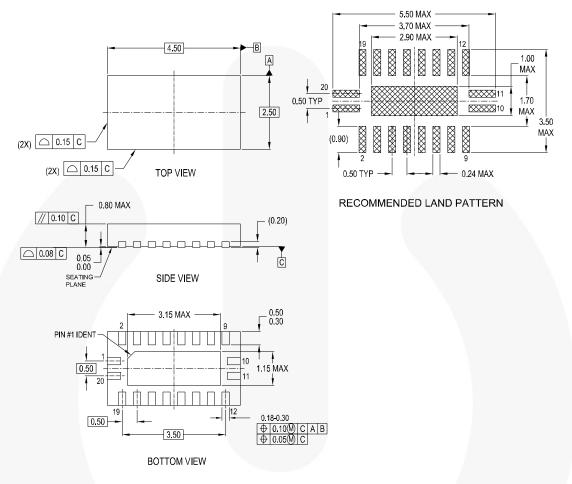




Figure 28. Video Amplifier Differential Phase, Gain & SNR

# **Physical Dimensions**



#### NOTES:

- A. CONFORMS TO JEDEC REGISTRATION MO-241, VARIATION AC
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994

#### MLP020BrevA

Figure 29. 20-Lead Depopulated very thin Quad Flat-pack No leads (DQFN)

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/.



and unregistered trademarks and service marks, owned by Fairchild Serniconductor and/or its global subsidiaries, and is not if all such trademarks. The following includes registered a intended to be an exhaustive list o TRADEMARKS



Dest

\* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

PDP SPM™

Flash\Writer®

# DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY. FUNCTION, OR DESIGN, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESIGNBE HEREIN, NETHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

# LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.

A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

# ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of serriconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadventerably purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by yountry on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Straibutors are given by your product information. Fairchild squality standards for handling and storage and provide access to Fairchild shill range of up-to-date rethinical and product information. Fairchild and our Authorized Distributors will stand behind all warrantes and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in suppping this pradice by buying direct or from authorized distributors.

# PRODUCT STATUS DEFINITIONS

# Definition of Terms

| Datasheet Identification | Product Status           | Definition                                                                                                                                                                                          |
|--------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Advance Information      | Formative /<br>In Design | Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.                                                                       |
| Preliminary              | First Production         | Datasheet contains preliminary data, supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. |
| No Identification Needed | Full Production          | Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.                                               |
| Obsolete                 | Not In Production        | Datasheet contains specifications on a product that is discontinued by Fairchild Serriconductor. The datasheet is for reference information only.                                                   |

www.fairchildsemi.com

ON Semiconductor and III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <a href="https://www.onsemi.com/site/pdf/Patent-Marking.pdf">www.onsemi.com/site/pdf/Patent-Marking.pdf</a>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.

Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

#### **PUBLICATION ORDERING INFORMATION**

#### LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative