

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, emplo

June 2016

FSA2276 — DPDT (0.5 Ω) HiFi Audio Switch w/ Negative Swing

Features

- V_{DD} Operating Range: 1.65 to 5.5 V
- External Capacitor Connection for Pop and Click Noise Suppression
- Power-Off Protection on Common Ports
- $R_{ON} = 0.5 \Omega$ (Typ.) at 1.8 V
- THD+N = -115 dB; 2 V_{RMS} , 20 k Ω Load; f = 1 kHz
- $X_{TALK} = -122 \text{ dB at } 1 \text{ V}_{RMS}$, 50 Ω Load; f = 1 kHz
- Off Isolation = -115 dB at 1 V_{RMS}, 50 Ω Load; f = 1 kHz
- 12-Lead UMLP 1.8 mm x 1.8 mm

Applications

- Mobile Phone, Tablet, Notebook PC, Media Player
- Docking Station, TV, Set-Top Box, LCD Monitor

Description

The FSA2276 is a high-performance, Double-Pole Double-Throw (DPDT) analog switch with negative swing audio capability. The FSA2276 features ultra-low audio R_{ON} of $0.5\,\Omega$ (typical) at 1.8 V $V_{DD}.$ The FSA2276 operates over a V_{DD} range of 1.65 V to 5.5 V, is fabricated with sub-micron CMOS technology to achieve fast switching speeds, and is designed for break-before-make operation. To minimize pop and click during operation, the turn on ramp time is selectable using an external capacitor (C_EXT).

The FSA2276 features THD+N specifications that target a Hi-Fidelity audio quality into both 32 Ω headphones and line out type loads (>600 Ω).

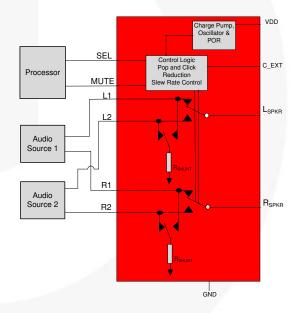


Figure 1. Application Block Diagram

Ordering Information

Part Number	Top Mark	Package Description
FSA2276UMX	EN	12-Lead, UMLP, Quad, JEDEC MO252, 1.8 mm x 1.8 mm

Pin Configuration

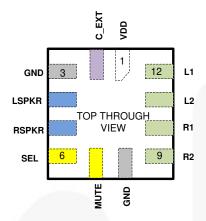


Figure 2. Pin Assignment (Top Through View)

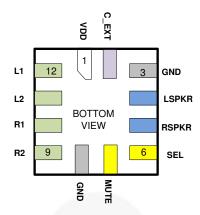


Figure 3. Pin Assignment (Bottom View)

Pin Descriptions

Pin	Name	Description		
1	VDD	Power Supply (1.65 to 5.5 V)		
2	C_EXT	Slow Turn On External Capacitor		
3	GND	Ground		
4	L _{SPKR}	Audio L _{SPPKR} Common I/O Port		
5	R _{SPKR}	Audio R _{SPPKR} Common I/O Port		
6	SEL	Select Pin		
7	MUTE	Mute Enable - Active High		
8	GND	Ground		
9	R2	Audio - Right Channel Source2 I/O Port		
10	R1	Audio – Right Channel Source1 I/O Port		
11	L2	Audio – Left Channel Source2 I/O Port		
12	L1	Audio – Left Channel Source1 I/O Port		

Truth Table

Mute	SEL	Function	Resistor Terminations
0	0	$L1 = L_{SPKR}; R1 = R_{SPKR}$	R _{SHUNT(s)} connect to L2/R2
0	1	L2 = L _{SPKR} ; R2 = R _{SPKR}	R _{SHUNT(s)} connect to L1/R1
1	0	L1 \neq L _{SPKR} ; L2 \neq L _{SPKR} ; R1 \neq R _{SPKR} ; R2 \neq R _{SPKR} (All Paths Hi-Z)	R _{SHUNT(s)} OPEN
1	1	L1 \neq L _{SPKR} ; L2 \neq L _{SPKR} ; R1 \neq R _{SPKR} ; R2 \neq R _{SPKR} (All Paths Hi-Z)	R _{SHUNT(s)} OPEN

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Paramete	Min.	Max.	Unit	
V_{DD}	Supply/Control Voltage				٧
V _{CNTRL}	Control Input Voltage	SEL, MUTE	-0.3	6.0	V
V _{SW}	DC Switch I/O Voltage	L1, L2, R1, R2, L _{SPKR} , R _{SPKR}		3.5	V
I _{IK}	ESD Input Diode Current		-50	mA	
Isw	Switch I/O Current		700	mA	
	Human Body Model, ANSI/ESDA/ JEDEC JS-001-2012	All Pins	5		
ESD	Charged Device Model, JEDEC: JESD22-C101				kV
	IEC 61000 4.2 System	Contact	8		
	IEC 61000-4-2 System Air Gap		15		
T _A	Absolute Maximum Operating Temperature			+85	°C
T _{STG}	Storage Temperature		-65	+150	°C

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter			Тур.	Max.	Unit
V_{DD}	Supply Voltage		1.65	1.80	5.50	V
V_{SW}	DC Switch I/O Voltage	L1, L2, R1, R2, L _{SPKR} , R _{SPKR}	-3.0		3.0	٧
V _{CNTRL}	Control Input Voltage	SEL, MUTE	0		V_{DD}	V
I _{SW}	DC Switch I/O Current			100		mA
T _A	Ambient Operating Temperatu	re	-40	25	+85	°C

DC Characteristics

 $V_{DD} = 1.65 \text{ V}$ to 5.5 V, $V_{DD} (Typ.) = 1.8 \text{ V}$, $T_A = -40 ^{\circ}\text{C}$ to $85 ^{\circ}\text{C}$, and $T_A (Typ.) = 25 ^{\circ}\text{C}$, unless otherwise specified. (1)

Symbol	Parameter	Condition	V _{DD} (V)	T _A =-40°C to +85°C			Unit	
				Min.	Тур.	Max.		
V _{IH}	VCNTRL Pin Input High Voltage (SEL, MUTE)	C_EXT = FLOAT		1.17		VDD	٧	
V _{IL}	VCNTRL Pin Input Low Voltage (SEL, MUTE)	C_EXT = FLOAT C_EXT = FLOAT		0		0.5	>	
I _{ON}	Switch-to-Gnd ON Leakage Current	L1, R1, L2, R2 = -3 V to 3 V, L _{SPKR} , R_{SPKR} = Float (I_{SW} = 0 mA) MUTE=LOW, SEL=0 or VDD C_EXT = FLOAT, Figure 6	1.65 to 5.5	-1.0	0.1	1.0	μΑ	
I _{NO_MUTE}	Switch-to-Gnd OFF Leakage Current (when Muted)	L1, R1, L2, R2 = -3 V to 3 V, L _{SPKR} , R_{SPKR} = Float (I_{SW} = 0 mA) MUTE = HIGH, SEL = 0 or VDD C_EXT = FLOAT, Figure 5	1.65 to 5.5	-1.0	0.1	1.0	μΑ	
I _{OFF}	Input Leakage Current ⁽²⁾	L1, R1, L2, R2 = -3 V to 3 V, L _{SPKR} , R_{SPKR} = Float (I_{SW} = 0 mA) MUTE = LOW, SEL = 0 or VDD, C_{EXT} = FLOAT	0	-1.0	0.1	1.0	μΑ	
I _{IN}	Control Input Leakage Current ⁽³⁾ (SEL, MUTE)	L1, R1, L2, R2 = -3 V to 3 V, L _{SPKR} , R _{SPKR} = Float (I_{SW} = 0 mA), C_EXT = FLOAT	1.65 to 5.5	-0.5	0.1	0.5	μΑ	
I _{DD}	VDD Supply Current	MUTE = LOW, SEL = 0 or VDD, C_EXT = FLOAT	5.5		16	30	μΑ	
I _{DDZ}	VDD Hi-Z Supply Current	MUTE = HIGH, SEL = 0 or VDD, C_EXT = FLOAT	5.5			1	μΑ	
I _{DDT}	Increase in IDD per Control Voltage	MUTE = LOW, SEL = 0 or 1.8 V SEL = LOW, MUTE = 0 or 1.8 V C_EXT = FLOAT	5.5	À		1	μΑ	
Ron	Switch On Resistance	ISW = 100 mA, V _{SW} = -3 V to 3 V C_EXT = FLOAT, Figure 4	1.65 to 5.5		0.5	1.0	Ω	
ΔR _{ON}	On Resistance Matching, Channel to Channel	ISW = 100 mA, V_{SW} = -3 V to 3 V C_EXT = FLOAT	1.65 to 5.5		30		mΩ	
R _{FLAT}	On Resistance Flatness	ISW = 100 mA, V_{SW} = -3 V to 3 V C_EXT = FLOAT	1.65 to 5.5		1		mΩ	
R _{SHUNT}	Click and Pop Resistance (L1, L2, R1, R2, L _{SPKR} , R _{SPKR})	VLX_RX = 3.0 V, MUTE = 0, SEL = 0 or VDD, C_EXT = FLOAT		6	10	14	kΩ	

Notes

- 1. Limits over the recommended temperature operating range ($T_A = -40$ °C to +85°C) are correlated by statistical quality.
- 2. Only valid for $V_{SW} > 0 V$.
- 3. $V_{MUTE} \le V_{DD} + 0.3$ otherwise additional input leakage current may flow.

AC Characteristics

 $V_{DD}=1.65~V~to~5.5~V,~V_{DD}~(Typ.)=1.8~V.~T_{A}=-40^{\circ}C~to~85^{\circ}C.~T_{A}~(Typ.)=25^{\circ}C,~unless~otherwise~specified.$

Cumbal	Parameter	Condition		V (A)	T _A =- 40°C to +85°C			Unit
Symbol	Parameter	Condition		V _{DD} (V)	Min.	Тур.	Max.	Ullit
	Enable Time	L1 = R1 = L2 = R2 = 1.5 V,	C_EXT = Float	1.8, 3.3		0.5		
t _{MUTE_ON}	(MUTE to	L _{SPKR} , R _{SPKR} = 50 Ω to GND SEL= 0 or V _{DD} ; See Figure 7	C_EXT = 0.1 μF	1.8		60		ms
	Output)	and Figure 8	C_EXT = 0.1 μF	3.3		100		
ton_mute	Disable Time (MUTE to	L1 = R1= L2 = R2 = 1.5 V, L_{SPKR} , R_{SPKR} = 50 Ω to GND, SEL = 0 or V_{DD} ; See Figure	C_EXT = Float	1.8, 3.3		35		μs
	Output)	7 and Figure 8	C_EXT = 0.1 μF			35		
		L1 (L2) = R1 (R2) = 1.5 V, L2 (L1) = R2 (R1) = 0 V	C_EXT = Float	1.8, 3.3		0.5		
t _{ON_SEL}	Turn On Time (SEL to Output)	L_{SPKR} , $R_{SPKR} = 50 \Omega$ to GND,	C_EXT = 0.1 μF	1.8		50		ms
	(OZZ to Gatpat)	SEL = 0 or V _{DD} ; MUTE = 0 See Figure 7 and Figure 8	C_EXT = 0.1 μF	3.3		100		
t _{OFF_SEL}	Turn On Time	L1 (L2) = R1 (R2) = 1.5 V, L2 (L1) = R2 (R1) = 0 V L _{SPKR} , R _{SPKR} = 50 Ω to GND,	C_EXT = Float	1.8, 3.3		20		μs
	(SEL to Output)	SEL= 0 or V _{DD} ; MUTE = 0 See Figure 7 and Figure 8	C_EXT = 0.1 μF	,		20		F
t _{BBM}	Break Before Make Time (SEL to Output)	L1 (L2) = R1 (R2) = 1.5 V, L _{SF} R _{SPKR} = 50 Ω to GND,SEL = 0 C_EXT = FLOAT, MUTE = 0 See Figure 7 and Figure 9	1.8, 3.3		500		μs	
O _{IRR}	Off Isolation ⁽⁴⁾	$\begin{split} &f=1\text{ kHz, R}_L=50\ \Omega,\ C_L=0\text{ pF,}\\ &\text{MUTE}=0\ V_{SW}=1\ V_{RMS}\ \text{Figure 11}\\ &f=1\text{ MHz, R}_L=50\ \Omega,\ C_L=0\text{ pF,}\\ &\text{MUTE}=0\ V_{SW}=1\ V_{RMS}\ \text{Figure 11} \end{split}$		1.8, 3.3		-115	8)	dB
OIRR	On isolation					-92		GB
O _{IRRM}	Off Isolation-	$\begin{split} &f=1\text{ kHz, }R_L=50\ \Omega,\ C_L=0\text{ pF,}\\ &\text{MUTE}=V_{DD};V_{SW}=1\ V_{RMS}\text{ Figure 11}\\ &f=1\text{ MHz, }R_L=50\ \Omega,\ C_L=0\text{ pF,}\\ &\text{MUTE}=V_{DD};V_{SW}=1\ V_{RMS}\text{ Figure 11} \end{split}$		1.8, 3.3		-113	1	dB
OIRRIVI	Muted ⁽⁴⁾					-95		ub
X _{TALK}	Cross Talk (Adjacent) (4)	$f = 1 \text{ kHz}, R_L = 50 \Omega, V_{SW} = 1$ Figure 12	V_{RMS}	1.8, 3.3		-122		dB
BW	-3 dB Bandwidth ⁽⁴⁾	$R_L = 50 \Omega$ Figure 10		1.8, 3.3		380		MHz
^	Power Supply	$V_{PSRR} = V_{DD} + 100 \text{ mV}_{RMS}$ $R_L = 20 \text{ k}\Omega \text{ or } 32 \Omega \text{ (at L}_{SPKR},$	$R_L = 32 \Omega$			-119		
PSRR	Rejection Ratio ⁽⁴⁾	$R_{SPKR)}$, MUTE = 0 or V_{DD} , $f = 1$ kHz, $V_{SW} = GND$ or Floa	D 20 kO	1.8, 3.3		-105		dB
		$R_L = 20 \text{ k}\Omega, f = 1 \text{ kHz},$				0.00018		%
	Takalilla	$V_{SW} = 2 V_{RMS}$, With A-weighte	d, Figure 15			-115		dB
THD+N	Total Harmonic Distortion +	$R_L=600 \Omega$, $f=1 \text{ kHz}$, $V_{SW}=2 V_{RMS}$				0.00018		%
-	Noise ⁽⁴⁾	With A-weighted, Figure 15		-		-115		dB
		$R_L = 32 \Omega$, $f = 1 \text{ kHz}$, $V_{SW} = 1 V_{RMS}$,				0.00018		%
		With A-weighted, Figure 15				-115		dB

Note:

4. Guaranteed by characterization. Not production tested.

Capacitance

Unless otherwise stated, V_{DD} = 1.65 V to 5.5 V, V_{DD} (Typ.) = 1.8 V, T_A = -40°C to 85°C, and T_A (Typ.) = 25°C. (5)

Symbol	Doromotor	Condition		V _{DD} (V)	T _A =- 40°C to +85°C			Heit
	Parameter				Min.	Тур.	Max.	Unit
C _{ON}	On Capacitance (Common Port) (6)	f = 1 MHz, 100 mV _{PK-PK} , 100 mV DC bias MUTE = 0 V Figure 14		1.8, 3.3		22		рF
C _{OFF1}	Off Capacitance (Common Port) (6)	f = 1 MHz, 100 mV _{PK-PK} , 100 mV DC bias MUTE = V _{DD} Figure 13		1.8, 3.3		25		рF
C _{OFF2}	Off Capacitance (Non-Common Ports) (6)	f = 1 MHz, 100 mV _{PK-PK} , 100 mV DC bias MUTE = 0 V Figure 13		1.8, 3.3		14		рF
C _{OFF_MUTE}	Off Capacitance - MUTED (Non-Common Ports) (6)	f = 1 MHz, 100 mV _{PK-PK} , 100 mV DC bias, MUTE = V _{DD}		1.8, 3.3		14		pF
C _{CNTRL}	Control Input Pin Capacitance (MUTE, SEL) ⁽⁶⁾	f = 1 MHz, 100 mV _{PP} , 100 mV DC bias	SEL MUTE	0		3 6		pF

Notes:

- Limits over the recommended temperature operating range (T_A=-40°C to +85°C) are correlated by statistical quality control methods.
- 6. Guaranteed by characterization. Not production tested.

Test Diagrams

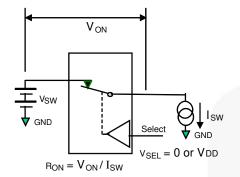


Figure 4. On Resistance

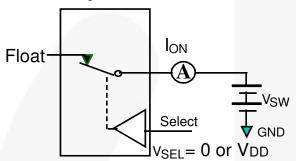


Figure 6. On Leakage

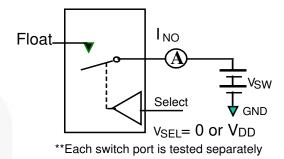


Figure 5. Off Leakage

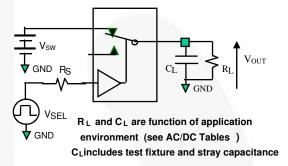


Figure 7. Test Circuit Load

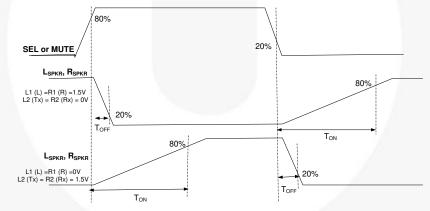


Figure 8. Turn On/Off Waveforms (SEL or MUTE to Output)

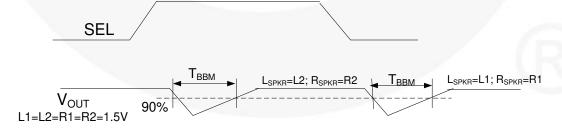
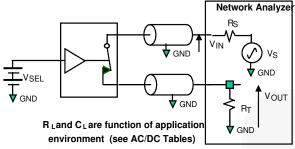



Figure 9. Break Before Make Interval Timing

Test Diagrams (Continued)

C_Lincludes test fixture and stray capacitance

Figure 10. Bandwidth

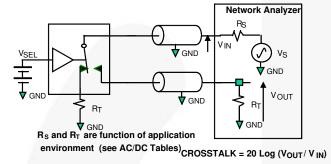


Figure 12. Adjacent Channel Crosstalk

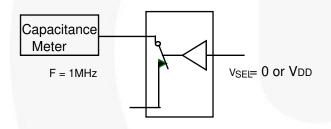


Figure 14. Channel On Capacitance

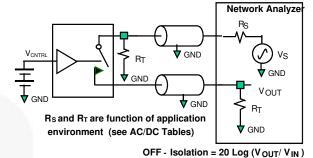


Figure 11. Channel Off Isolation

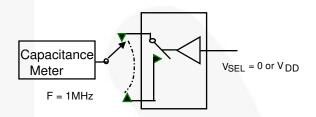


Figure 13. Channel Off Capacitance

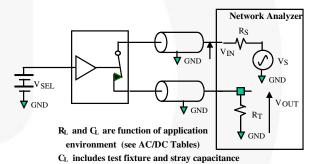
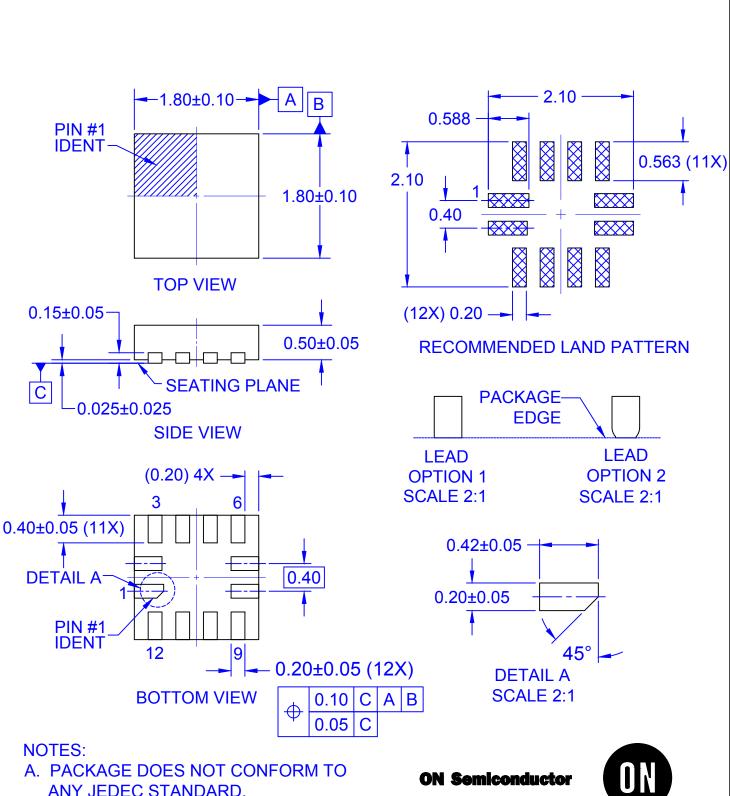



Figure 15. Total Harmonic Distortion (THD+N)

- ANY JEDEC STANDARD.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. LAND PATTERN RECOMMENDATION IS EXISTING INDUSTRY LAND PATTERN.
- D. DRAWING FILENAME: MKT-UMLP12ArevF

ON Semiconductor and III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.

Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative