

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild guestions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights or others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries,

August 2014

FSA3041 High-Speed 4:1 USB2.0 / MHL™ / Audio / UART Switch

Features

- Low On Capacitance: 4.2 pF / 7.5 pF MHL / USB (Typical)
- Low Power Consumption: 30 μA Maximum
- Supports MHL Rev. 2.0
- MHL Data Rate: 3.8 Gbps
- LINOUT Swing: -1.5 V to +3.0 V (Typical)
- USB 2.0 Compliant
- Packaged in 16-Lead UMLP (1.8 x 2.6 mm)
- Over-Voltage Tolerance on All USB Ports: Up to 5.25 V without External Components

Applications

- Cell Phones
- Digital Cameras

Description

The FSA3041 is a bi-directional, low-power, high-speed, 4:1, USB2.0, MHL™, UART, and audio switch. Configured as a Double-Pole, Four-Throw (DP4T) switch; it is optimized for switching between high- or full-speed USB, Mobile High-Definition Link sources (MHL Rev. 2.0 specification), UART, and negative-swing capable audio. In addition, either USB 2.0 path can be used as a UART path.

The FSA3041 contains circuitry on the switch I/O pins, for applications where the $V_{\rm CC}$ supply is powered off ($V_{\rm CC}=0$ V), that allows the device to withstand an overvoltage condition. This switch is designed to minimize current consumption even when the control voltage applied to the control pins is lower than the supply voltage ($V_{\rm CC}$). This is especially valuable in mobile applications, such as cell phones, allowing direct interface with the general-purpose I/Os of the baseband processor. Other applications include switching and connector sharing in portable cell phones, digital cameras, and notebook computers.

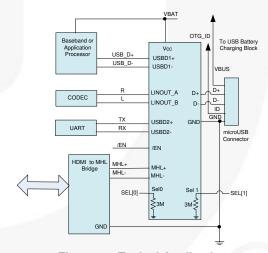


Figure 1. Typical Application

Ordering Information

Part Number	Top Mark	Operating Temperature Range	Package
FSA3041UMX	LZ	-40 to +85°C	16-Lead, Ultrathin Molded Leadless Package (UMLP), 1.8 mm x 2.6 mm

All trademarks are the property of their respective owners.

Pin Configuration

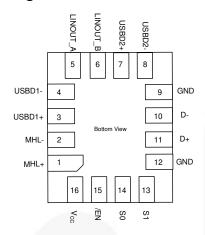


Figure 2. Pin Assignments

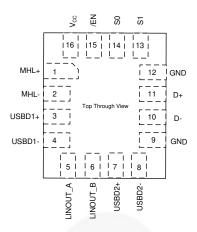


Figure 3. Top Through View

Pin Definitions

Pin#	Name	Description
1	MHL+	MHL Differential Data (Positive)
2	MHL-	MHL Differential Data (Negative)
3	USBD1+	USB Differential Data (Positive). Can also be used as additional UART.
4	USBD1-	USB Differential Data (Negative). Can also be used as additional UART.
5	LINOUT_A	Audio
6	LINOUT_B	Audio
7	USBD2+	USB Differential Data (Positive). Can be used as a UART port (see Figure 1).
8	USBD2-	USB Differential Data (Negative). Can be used as a UART port (see Figure 1).
9	GND	Ground
10	D-	USB Differential Data (Negative), Common Port
11	D+	USB Differential Data (Positive), Common Port
12	GND	Ground
13	SEL1	Data Switch Select (see Table 1)
14	SEL0	Data Switch Select (see Table 1)
15	/EN	Enable Pin - Active LOW
16	V_{CC}	Device Power from System (Typically V _{BAT})

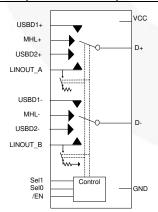


Figure 4. Analog Symbol

Table 1. Data Switch Select Truth Table

SEL1 ⁽¹⁾	SEL0 ⁽¹⁾	Shunt	/EN ⁽¹⁾	Function
0	0	Enabled	0	D+/D- connected to USBD1+/ USBD1- (or UART) path
0	1	Enabled	0	D+/D- connected to USBD2+/USBD2- (or UART) path
1	0	Enabled	0	D+/D- connected to MHL+/MHL- path
1	1	Disabled	0	D+/D- connected to LINOUT_A/LINOUT_B audio path
Χ	Χ	Disabled	1	D+/D- high impedance

Note:

. Control inputs should never be left floating or unconnected. To guarantee default switch closure to the USB position, the SEL[0:1] pins are tied to GND with internal weak pull-down resistors (3M Ω) to minimize static current draw.

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter		Min.	Max.	Unit
V _{CC}	Supply Voltage		-0.5	5.5	V
V _{CNTRL}	DC Input Voltage (/EN, SEL[1:0]) ⁽²⁾		-0.5	Vcc	V
		USB, MHL, UART	-0.5	Vcc	
$V_{SW}^{(3)}$	DC Switch I/O Voltage ⁽²⁾	Audio (Active)	-2.0	3.0	V
		Audio (Inactive)	-2.0	V _{CC}	
I _{IK}	DC Input Diode Current		-50		mA
	Switch DC Output Current (Continuous)	USB, MHL, UART		60	mA
l _{out}		Audio		60	mA
//	Switch DC Output Peak Current	USB, MHL, UART		150	mA
IOUTPEAK	(Pulsed at 1ms Duration, <10% Duty Cycle)	Audio		150	mA
T _{STG}	Storage Temperature		-65	+150	°C
MSL	Moisture Sensitivity Level: JEDEC J-STD-020A			1	
	Human Body Model, JEDEC: JESD22-A114	All Pins		4	
ESD	IEC 61000-4-2, Level 4, for D+/D- and V _{CC} Pins ⁽⁴⁾	Contact		8	141
E9D	IEC 61000-4-2, Level 4, for D+/D- and V _{CC} Pins ⁽⁴⁾	Air		15	kV
	Charged Device Model, JESD22-C101			2	

Notes:

- 2. The input and output negative ratings may be exceeded if the input and output diode current ratings are observed.
- 3. V_{SW} refers to analog data switch paths (USB, MHL, and audio).
- 4. Testing performed in a system environment using TVS diodes.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Max.	Unit
Vcc	Supply Voltage	2.5	4.5	V
t _{RAMP(VCC)}	Power Supply Slew Rate	100	1000	μs/V
V _{CNTRL}	Control Input Voltage (/EN, SEL[1:0]) ⁽⁵⁾	0	4.5	V
$V_{SW(USB)}$	Switch I/O Voltage (USB Switch Path)	-0.5	3.6	V
Θ_{JA}	Thermal Resistance		273	C°/W
$V_{\text{SW}(\text{MHL})}$	Switch I/O Voltage (MHL Switch Path)	1.65	3.45	V
V _{SW(AUD)}	Switch I/O Voltage (Audio Switch Path)	-1.5	3.0	V
V _{SW(UART)}	Switch I/O Voltage (UART Switch Path)	-0.5	3.6	V
T _A	Operating Temperature	-40	+85	°C

Note:

5. The control inputs must be held HIGH or LOW; they must not float.

DC Electrical Characteristics

All typical value are at $T_A = 25$ °C unless otherwise specified.

Cumbal	Doromotor	Condition	V _{cc}	T _A =-4	0°C to	+85°C	Unit
Symbol	Parameter	Condition	(V)	Min.	Тур.	Max.	Unit
V _{IK}	Clamp Diode Voltage	I _{IN} =-18 mA	2.5			-1.2	V
			2.5	1.3			V
V_{IH}	Control Input Voltage HIGH	SEL[1:0]	3.6	1.4			V
			4.5	1.5			V
			2.5			0.4	V
V_{IL}	Control Input Voltage LOW	SEL[1:0]	3.6			0.4	V
			4.5			0.4	V
I _{IN}	Control Input Leakage SEL[1:0]	V_{SW} (MHL & USB)=0 to 3.6 V, V_{SW} (AUD)=0 to 3 V, V_{CNTRL} =0 to V_{CC}	4.5	-2.5		2.5	μΑ
I _{OZ(MHL)}	Off-State Leakage for Open MHL Data Paths	V_{SW} =1.65 \leq MHL \leq 3.45 V, /EN= V_{CC} , Figure 6	4.5	-0.5		0.5	μΑ
I _{OZ(USB,} UART)	Off-State Leakage for Open USB Data Paths	$V_{SW}=0 \le USB$, $UART \le 3.6 V$, $/EN=V_{CC}$, Figure 6	4.5	-0.5		0.5	μΑ
I _{CL(MHL)}	On-State Leakage for Closed MHL Data Paths ⁽⁶⁾	$\begin{split} &V_{\text{SW}}\text{=}1.65 \leq \text{MHL} \leq 3.45 \text{ V}, \\ &/\text{EN=GND, SEL0=GND,} \\ &\text{SEL1=V}_{\text{CC}} \end{split}$	4.5	-0.5		0.5	μΑ
I _{CL(USB, UART)}	On-State Leakage for Closed USB Data Paths ⁽⁶⁾	V_{SW} =0 \leq USB, UART \leq 3.6 V, /EN=GND, SEL[1:0]=GND and SEL1=GND, SEL0= V_{CC}	4.5	-0.5		0.5	μΑ
I _{CL(AUD)}	On-State Leakage for Closed ⁽⁶⁾ Audio Data Path	$\begin{split} &V_{SW}{=}0 \leq LINOUT \leq 3.0 \ V, \\ &SEL[1:0]{=}V_{CC} \end{split}$	4.5	-1		1	μΑ
l _{OFF}	Power-Off Leakage Current (USB, MHL, Audio Paths)	V _{SW} =0V or 3.6 V, Figure 6	0	-1		1	μΑ
R _{ON(USB)}	HS Switch On Resistance (USBDn to Dn Path)	V _{SW} =0.4V, I _{ON} =-8 mA, SEL[1:0]=GND, and SEL1=GND, SEL0=V _{CC} Figure 5	2.5 to 4.5		7		Ω
R _{ON(MHL)}	HS Switch On Resistance (MHL to D Path)	V _{SW} =V _{CC} -1050 mV, SEL0=GND, SEL1=V _{CC} , I _{ON} =-8 mA, Figure 5	2.5 to 4.5		5	7	Ω
Ron(AUD)	Audio Switch On Resistance (LINOUT Path)	V _{SW} =-1.5V to 1.5V, SEL[1:0]=V _{CC} , I _{ON} =-24 mA, Figure 5	2.5 to 4.5		7	7	Ω
R _{ON(UART)}	UART Switch On Resistance (UART Path)	V _{SW} =0V to 3.6 V, SEL[1:0]=GND and SEL1=GND, SEL0=V _{CC} , I _{ON} =-8 mA, Figure 5	2.5 to 4.5		8.5		Ω
$\Delta R_{\text{ON(MHL)}}$	Difference in R _{ON} Between MHL Positive-Negative	$V_{SW}=V_{CC}-1050$ mV, SEL0=GND, SEL1= V_{CC} , $I_{ON}=-8$ mA, Figure 5,	2.5 to 4.5		0.03	(F	Ω
$\Delta R_{ON(USB)}$	Difference in R _{ON} Between USB Positive-Negative	V _{SW} =0.4V, I _{ON} =-8 mA, SEL[1:0]=GND and SEL1=GND, SEL0=V _{CC} , Figure 5	2.5 to 4.5		0.18	1	Ω
$\Delta R_{ON(AUD)}$	Difference in R _{ON} Between LINOUT	V _{SW} =1.5 V, SEL[1:0]=V _{CC} , I _{ON} =-24 mA, Figure 5	2.5 to 4.5		0.1		Ω
$\Delta R_{\text{ON(UART)}}$	Difference in R _{ON} Between UART	V _{SW} =1.5 V, SEL[1:0]=GND, and SEL1=GND, SEL0=V _{CC} , I _{ON} =-8 mA, Figure 5	2.5 to 4.5		0.1		Ω

Continued on the following page...

DC Electrical Characteristics

All typical value are at $T_A = 25$ °C unless otherwise specified.

Cumbal	Poromotor Condition		V _{cc}	T _A =-4	0°C to	+85°C	I I m i a
Symbol	Parameter	Condition	(V)	Min.	Тур.	Max.	Unit
R _{ONF(MHL)}	Flatness for R _{ON} MHL Path	V_{SW} =1.65 to 3.45 V, SEL0=GND, SEL1= V_{CC} , I_{ON} =-8 mA, Figure 5	2.5 to 4.5		1		Ω
R _{ONFA(AUDIO)}	Flatness for R _{ON} Audio (LINOUT) Path	V _{SW} =-1.5 V to 1.5 V, SEL[1:0]=V _{CC} , I _{ON} =-24 mA, Figure 5	2.5 to 4.5		0.1		Ω
R _{ONFT(UART)}	Flatness for R _{ON} UART Path	V _{SW} =0 V to 3.6 V, SEL[1:0]=GND and SEL1=GND, SEL0=V _{CC} , I _{ON} =-8 mA, Figure 5	2.5 to 4.5		1.9		Ω
Ronfd(USB)	Flatness for R _{ON} USB Path	V _{SW} =0V to 3.6 V, SEL[1:0]=GND and SEL1=GND, SEL0=V _{CC} , I _{ON} =-8 mA, Figure 5	2.5 to 4.5		1.9		Ω
R _{PD}	Internal Pull-Down Resistors on SEL0 & SEL1		2.5 to 4.5		3		МΩ
R _{SH}	Shunt Resistance		3.6		100	200	Ω
Icc	Quiescent Current	V _{CNTRL} =0 or 4.5 V, I _{OUT} =0	4.5			30	μΑ
I _{CCZ}	Quiescent Current-High Impedance	V _{/EN} =4.5 V, I _{OUT} =0	4.5	V.		1	μА
	Delta Increase in Quiescent	V _{CNTRL} =1.65 V, I _{OUT} =0	4.5			10	
I _{CCT}	Current per Control Pin	V _{CNTRL} =2.5 V, I _{OUT} =0	4.5			5	μΑ

Note:

AC Electrical Characteristics

All typical values are for $V_{CC} = 3.3 \text{ V}$ and $T_A = 25^{\circ}\text{C}$ unless otherwise specified.

Cumbal	Dovomotov	Condition	V 00	T _A =-4	l0°C to +	-85°C	Hait
Symbol	Parameter	Condition	V _{cc} (V)	Min.	Тур.	Max.	Unit
tonusb	USB Turn-On Time, SEL[1:0] to Output	$\begin{array}{l} R_L{=}50~\Omega,~C_L{=}5~pF,~V_{SW(USB)}{=}0.8~V,\\ V_{SW(MHL)}{=}3.3~V,~V_{SW(AUD)}{=}1.5V,\\ V_{SW(UART)}{=}3.3~V,~Figure~7,~Figure~8 \end{array}$	2.5 to 4.5		445	600	ns
toffusb	USB Turn-Off Time, SEL[1:0] to Output	$\begin{array}{l} R_L \! = \! 50~\Omega,~C_L \! = \! 5~pF,\\ V_{SW(USB)} \! = \! 0.8~V,~V_{SW(MHL)} \! = \! 3.3~V,\\ V_{SW(AUD)} \! = \! 1.5~V,~V_{SW(UART)} \! = \! 3.3~V,\\ Figure~7,~Figure~8 \end{array}$	2.5 to 4.5		445	600	ns
tonaud	Audio Turn-On Time, SEL[1:0] to Output	$\begin{array}{l} R_L \! = \! 50~\Omega,~C_L \! = \! 5~pF, \\ V_{SW(USB)} \! = \! 0.8~V,~V_{SW(MHL)} \! = \! 3.3~V, \\ V_{SW(AUD)} \! = \! 1.5~V,~V_{SW(UART)} \! = \! 3.3~V, \\ Figure~7,~Figure~8 \end{array}$	2.5 to 4.5		445	600	ns
toffaud	Audio Turn-Off Time, SEL[1:0] to Output	$\begin{array}{l} R_L \! = \! 50~\Omega,~C_L \! = \! 5~pF,\\ V_{SW(USB)} \! = \! 0.8~V,~V_{SW(MHL)} \! = \! 3.3~V,\\ V_{SW(AUD)} \! = \! 1.5~V,~V_{SW(UART)} \! = \! 3.3~V,\\ Figure~7,~Figure~8 \end{array}$	2.5 to 4.5		445	600	ns
t _{ONMHL}	MHL Turn-On Time, SEL[1:0] to Output	$R_L = 50~\Omega$ to 3.3 V, $C_L = 5~pF,$ $V_{SW(USB)} = 0.8$ V, $V_{SW(MHL)} = 3.3$ V, $V_{SW(AUD)} = 1.5$ V, $V_{SW(UART)} = 3.3$ V, Figure 7, Figure 8	2.5 to 4.5		445	600	ns

^{6.} For this test, the data switch is closed with the respective switch pin floating.

AC Electrical Characteristics

All typical values are for V_{CC} = 3.3 V and T_{A} = 25°C unless otherwise specified.

O. mak al	Dawamatan	O a madistica m	v 00	T _A =-4	T _A =-40°C to +85°C		
Symbol	Parameter	Condition	V _{cc} (V)	Min.	Тур.	Max.	Unit
toffmhl	MHL Turn-Off Time, SEL[1:0] to Output	$R_L = 50~\Omega$ to 3.3 V, $C_L = 5~pF,$ $V_{SW(USB)} = 0.8$ V, $V_{SW(MHL)} = 3.3$ V, $V_{SW(AUD)} = 1.5$ V, $V_{SW(UART)} = 3.3$ V, Figure 7, Figure 8	2.5 to 4.5		445	600	ns
t _{ONUART}	UART Turn-On Time, SEL[1:0] to Output	$\begin{array}{l} R_{L}{=}5~k\Omega,~C_{L}{=}5~pF,~V_{SW(USB)}{=}0.8~V,\\ V_{SW(MHL)}{=}3.3~V,~V_{SW(AUD)}{=}1.5~V,\\ V_{SW(UART)}{=}3.3~V,~Figure~7,~Figure~8 \end{array}$	2.5 to 4.5		445	600	ns
t _{OFFUART}	UART Turn-Off Time, SEL[1:0] to Output	$\begin{array}{l} R_{\text{L}=5} \ k\Omega, \ C_{\text{L}=5} \ \text{pF}, \ V_{\text{SW(USB)}=0.8} \ \text{V}, \\ V_{\text{SW(MHL)}=3.3} \ \text{V}, \ V_{\text{SW(AUD)}=1.5} \ \text{V}, \\ V_{\text{SW(UART)}=3.3} \ \text{V}, \ \text{Figure} \ 7, \ \text{Figure} \ 8 \end{array}$	2.5 to 4.5		445	600	ns
t _{ENABLE}	Enable Turn-On Time, /EN to Output	$\begin{array}{l} R_L{=}50~\Omega,~C_L{=}5~pF,~V_{SW(USB)}{=}0.8~V,\\ V_{SW(MHL)}{=}3.3~V,~V_{SW(AUD)}{=}1.5~V,\\ V_{SW(UART)}{=}3.3~V,~Figure~7,~Figure~8 \end{array}$	2.5 to 4.5		70		μs
tdisable	Disable Turn-Off Time, /EN to Output	$\begin{array}{l} R_{L}{=}50~\Omega,~C_{L}{=}5~pF,~V_{SW(USB)}{=}0.8~V,\\ V_{SW(MHL)}{=}3.3~V,~V_{SW(AUD)}{=}1.5~V,\\ V_{SW(UART)}{=}3.3~V,~Figure~7,~Figure~8 \end{array}$	2.5 to 4.5		35		ns
t _{PD}	Propagation Delay ⁽⁷⁾	$C_L=5$ pF, $R_L=50$ Ω , Figure 7, Figure 9	2.5 to 4.5		0.25		ns
t _{BBM}	Break-Before- Make ⁽⁷⁾	$R_{L}{=}50~\Omega,~C_{L}{=}5~pF,~V_{AUD}{=}1.5~V,~V_{MHL}{=}3.3~V,~V_{USB}{=}0.8~V,~V_{UART}{=}3.3~V,~Figure~11$	2.5 to 4.5	50	120	425	ns
O _{IRR(MHL)}		V_S =1 V_{pk-pk} , R_L =50 Ω , f=240 MHz, Figure 13	2.5 to 4.5		-36		dB
O _{IRR(USB)}	Off Isolation ⁽⁷⁾	V_S =400 m V_{pk-pk} , RL=50 Ω , f=240 MHz, Figure 13	2.5 to 4.5		-38		dB
O _{IRR(UART)}		V_S =3.6 V_{pk-pk} , R_L =50 Ω , f=10 MHz, Figure 13	2.5 to 4.5		-38		dB
Xtalk _{MHL}		V_{S} =1 V_{pk-pk} , R_{L} =50 Ω , f=240 MHz, Figure 14	2.5 to 4.5	/	-44		dB
Xtalk _{USB}	Non-Adjacent	$V_{S}{=}400~\text{mV}_{\text{pk-pk}},~R_{L}{=}50~\Omega,~f{=}240~\text{MHz},$ Figure 14	2.5 to 4.5		-32		dB
Xtalk _{AUD}	Channel Crosstalk ⁽⁷⁾	$V_{S}{=}100~\text{mV}_{RMS},~R_{L}{=}32~\Omega,~f{=}20~\text{kHz},$ Figure 14	2.5 to 4.5		-70		dB
Xtalk _{UART}		V_S =400 m V_{pk-pk} , R_L =50 Ω , f=10 MHz, Figure 14	2.5 to 4.5		-70		dB
THD	Total Harmonic Distortion - LINOUT	R_{T} =600 Ω , V_{SW} =2 V_{pk-pk} , f =20 Hz to 20 kHz, V_{BIAS} =0 V	2.5 to 4.5		0.01		%
	S _{DD21} Differential -	V_{IN} =1 V_{pk-pk} , Common Mode Voltage= V_{CC} –1.1 V, MHL Path, R_L =50 Ω , C_L =0 pF, Figure 12			1.9	R	GHz
BW	3db Bandwidth ⁽⁷⁾	V_{IN} =400 m $V_{\text{pk-pk}}$, Common Mode Voltage=0.2 V, USB Path, R _L =50 Ω , C _L =0 pF, Figure 12	2.5 to 4.5		640 ⁽⁸⁾		MHz
	Single Ended	Audio Path, R _L =50 Ω, C _L =0 pF		5			MHz

Note:

- Guaranteed by characterization.
 Passed USB 2.0 Compliant Test

USB High-Speed AC Electrical Characteristics

Typical values are at $T_A = 25^{\circ}C$ and $V_{CC} = 3.0$ to 3.6 V.

Symbol	Parameter	Condition	Тур.	Unit
t _{SK(P)}	Skew of Opposite Transitions of the Same Output ⁽⁹⁾	$C_L=5$ pF, $R_L=50$ Ω , Figure 10	3	ps
tJ	Total Jitter ⁽⁹⁾	$R_L=50 \ \Omega, \ C_L=5 \ pf,$ $t_R=t_F=500 \ ps \ (10-90\%) \ at$ $480 \ Mbps, \ PN7$	26	ps

Note:

9. Guaranteed by characterization.

MHL™ AC Electrical Characteristics

Typical values are at $T_A = 25^{\circ}C$ and $V_{CC} = 3.0$ to 3.6 V.

Symbol	Parameter	Condition	Тур.	Unit
t _{SK(P)}	Skew of Opposite Transitions of the Same Output (10)	R _{PU} =50 Ω to V _{CC} , C _L =0 pF	3	ps
tJ	Total Jitter ⁽¹⁰⁾	f=2.25 Gbps, PN7, R _{PU} =50 Ω to V _{CC} , C _L =0 pF	18	ps

Note:

10. Guaranteed by characterization.

Capacitance

Typical values are at $T_A = 25^{\circ}C$.

Symbol	Parameter	Condition	Тур.	Unit
C _{IN}	Control Pin Input Capacitance ⁽¹¹⁾	V _{CC} =0 V, f=1 MHz	2.5	7
C _{ON(USB)}	USB Path On Capacitance ⁽¹¹⁾	V _{CC} =3.3 V, f=240 MHz, Figure 16	7.5	
C _{OFF(USB)}	USB Path Off Capacitance ⁽¹¹⁾	V _{CC} =3.3 V, f=240 MHz, Figure 15	2.5	pF
C _{ON(MHL)}	MHL Path On Capacitance ⁽¹¹⁾	V _{CC} =3.3 V, f=240 MHz, Figure 16	4.2	
C _{OFF(MHL)}	MHL Path Off Capacitance (11)	V _{CC} =3.3 V, f=240 MHz, Figure 15	2.5	
C _{ON(AUD)}	Audio Path On Capacitance ⁽¹¹⁾	V _{CC} =3.3 V, f=1 MHz, Figure 16	7.0	nE
C _{OFF} (AUD)	Audio Path Off Capacitance ⁽¹¹⁾	V _{CC} =3.3 V, f=1 MHz, Figure 15	3.5	pF
C _{ON(UART)}	UART Path On Capacitance(11)	V _{CC} =3.3 V, f=1 MHz, Figure 16	8.0	n E
C _{OFF(UART)}	UART Path Off Capacitance (11)	V _{CC} =3.3 V, f=1 MHz, Figure 15	3.0	pF

Note:

11. Guaranteed by characterization.

Test Diagrams

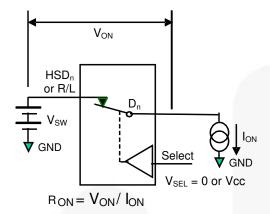


Figure 5. On Resistance

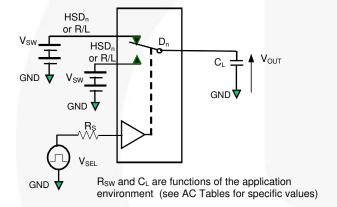
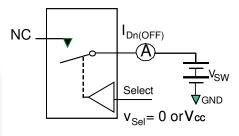



Figure 7. AC Test Circuit Load

**Each switch port is tested separately

Figure 6. Off Leakage

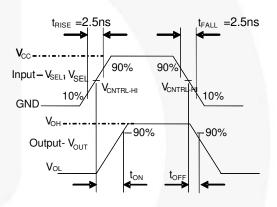
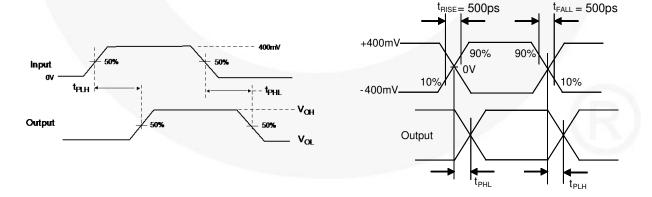
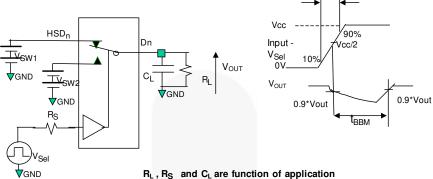


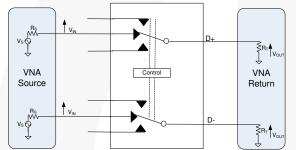
Figure 8. Turn-On / Turn-Off Waveforms



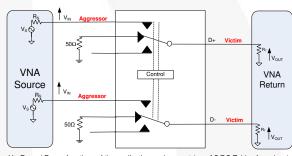

Figure 9. Propagation Delay (t_Rt_F - 500 ps)

Note:

12. HSD_n refers to the high-speed data USB or MHL paths.

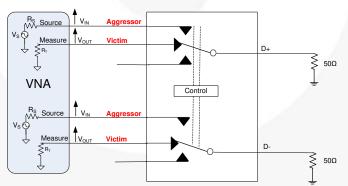

Figure 10. Intra-Pair Skew Test $t_{\text{SK}(P)}$

Test Diagrams (Continued)



R_L, R_S and C_L are function of application environment (see AC Tables for specific values) C_L includes test fixture and stray capacitance

Figure 11. Break-Before-Make Interval Timing


 V_S , R_S and R_T are functions of the application environment (see AC/DC Tables for values)

 V_S , R_S and R_T are functions of the application environment (see AC/DC Tables for values) Off Isolation = 20 Log ($V_{OUT} - V_{IN}$)

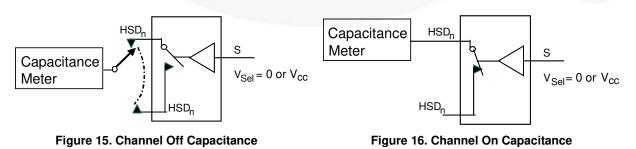

Figure 12. Insertion Loss (SDD21)

Figure 13. Channel Off Isolation (SDD21)

VS, RS and RT are functions of the application environment (see AC/DC Tables for values). Off Isolation = 20 Log (VOUT - VIN)

Figure 14. Non-Adjacent Channel-to-Channel Crosstalk (SDD21)

Functional Description

Insertion Loss

One of the key advantages of using the FSA3041 in mobile digital video applications is the small amount of insertion loss experienced by the received signal as it passes through the switch. This results in minimal degradation to the received eye. One of the ways to measure the quality of the high data rate channels is using balanced ports and four-port differential Sparameter analysis, particularly SDD21.

Bandwidth is measured using the S-parameter SDD21 methodology.

Typical Applications

Figure 19 shows the FSA3041 utilizing the V_{BAT} connection. The 3 M Ω resistors are used to ensure, for manufacturing test via the micro-USB connector, that the FSA3041 configures for connectivity to the baseband or application processor.

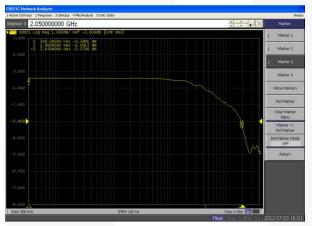


Figure 17. MHL Path SDD21 Insertion Loss Curve

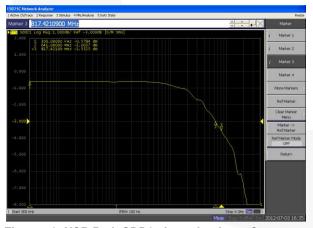


Figure 18. USB Path SDD21 Insertion Loss Curve

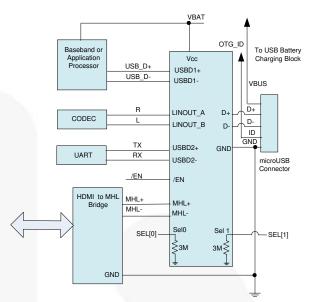
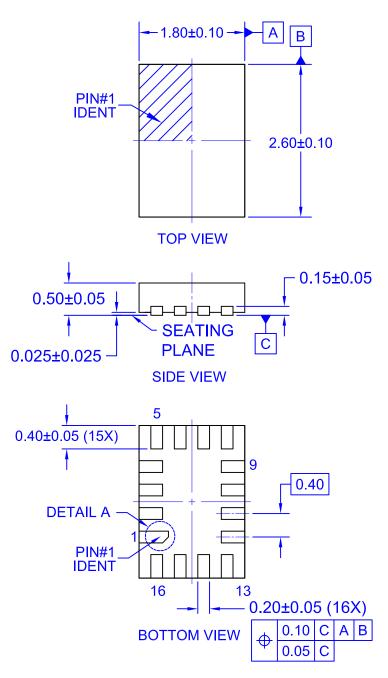



Figure 19. Typical Application

\bowtie - 0.225 (16X) RECOMMENDED LAND PATTERN 0.50±0.05 -0.20±0.05 45° **DETAIL A** SCALE 2:1 LEAD SHAPE AT PACKAGE EDGE R0.10 **PACKAGE EDGE LEAD LEAD OPTION 2 OPTION 1** SCALE 2:1 SCALE 2:1

2.10 -

0.663

0.40

- 0.563 (15X)

2.90

NOTES:

- A. PACKAGE DOES NOT FULLY CONFORM TO JEDEC STANDARD.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. LAND PATTERN RECOMMENDATION IS EXISTING INDUSTRY LAND PATTERN.
- D DRAWING FILENAME: MKT-UMLP16ArevG.
- E. TERMINAL SHAPE MAY VARY ACCORDING TO PACKAGE SUPPLIER, SEE TERMINAL SHAPE VARIANTS.

ON Semiconductor

ON Semiconductor and III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.

Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative