

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

September 2017

FSA4476 — USB Type-C analog audio switch with protection function

Features

- Power Management
 - Primary power supply: VBAT, 2.7 V to 5.5 V
- Second power supply VBUS, 4.0 V to 20 V
- USB High Speed(480Mbps) Switch:
 - -3dB bandwidth: 1 GHz
 - 3ΩR_{ON} Typical
- Audio switch
 - Negative rail capability: -3V to +3V
 - THD+N = -110 dB; 1 V_{RMS} , f=20Hz~20 kHz,32Ω Load;
 - 0.6ΩR_{ON} Typical
- High voltage protection
 - 20V DC protection on CC port and SBU port
 - 16V DC protection on DP/R and DN/L port
- Over Voltage Protection:
 - 5.8V (Typ) on CC port
 - 4.5V (Typ) on SBU port
 - 4.5V (Typ) on DP/R and DN/L port
- OMTP and CTIA pinout support
- Support Audio Sense Path
- SupportDead Battery
- 25-ball WLCSP Package (2.03mm x 2.03mm)

Applications

■ Mobile Phone, Tablet, Notebook PC, Media Player

Description

FSA4476 is a high performance USBType-C port multimedia switch which supports analog audio headsets. FSA4476 allows the sharing of a common USB Type-C port to pass USB2.0 signal, analog audio, sideband use wires and analog microphone signal. FSA4476 also supports high voltage on CC port, SBU port and USB port on USB Type-C receptacle side. In addition, FSA4476 supports USB Type-C dead battery application and dual power supply with VBAT rail and VBUS rail.

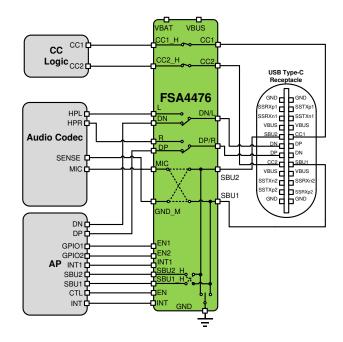


Figure 1. Application Block Diagram

Ordering Information

Part Number	Top Mark	Package Description
FSA4476UCX	GR	25 Ball WLCSP

Pin Configuration

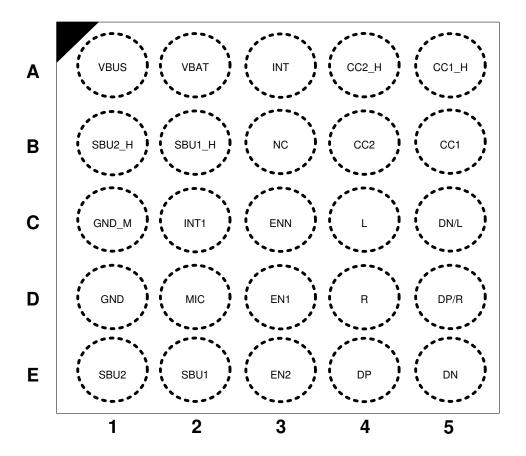


Figure 2. Pin Assignment (Top Through View)

Pin Descriptions

Name	Ball	Description		
VBUS	A1	Power Supply		
VBAT	A2	Power Supply		
GND	D1	Pround		
DP/R	D5	USB Positive Data/Right Audio Common Line		
DN/L	C5	USB Negative Data/Left Audio Common Line		
DP	E4	Positive DataLine for USB signals		
DN	E5	Negative DataLine for USB signals		
L	C4	Left Line for Audio Signals		
R	D4	Right Line for Audio Signals		
SBU1	E2	Sideband Use Wire 1 Common Line		
SBU2	E1	Sideband Use Wire 2 Common Line		
MIC	D2	Microphone, connects to microphone pre-amplifier		
GND_M	C1	Sense Pin to Detect GND offset		
SBU1_H	B2	Host Side Sideband Use Wire 1		

Name	Ball	Description
SBU2_H	B1	Host Side Sideband Use Wire 2
CC1	B5	Configuration Channel 1
CC2	B4	Configuration Channel 2
CC1_H	A5	Host Side Configuration Channel 1
CC2_H	A4	Host Side Configuration Channel 2
INT	A3	OVP Interrupt Output, active low(open drain)
INT1	C2	Interrupt Output Signal; During EN1=1, INT1 is low active (open drain output) when CC1_H <1.2V and CC2_H<1.2V.
ENN	C3	Chip Enable, active low, internal pull-down by 1Mohm.
EN1	D3	Logic Configuration Input 1
EN2	E3	Logic Configuration Input 2
NC	B3	No Connect

Truth Table

Power	ENN	EN1,EN2	CC switch	Headset detection	USB switch	Audio switch	MIC SW / GND_M SW	SBU bypass switch
OFF	Х	XX	Dead battery	OFF	OFF	OFF	OFF	OFF
ON	Н	XX	OFF	OFF	OFF	OFF	OFF	OFF
ON	L	00	ON	OFF	ON: DP/R to DP DN/L to DN	OFF	OFF	ON: SBU1 to SBU1_H SBU2 to SBU2_H
ON	L	01	ON	OFF	ON: DP/R to DP DN/L to DN	OFF	OFF	ON: SBU1 to SBU2_H SBU2 to SBU1_H
ON	L	10	ON	ON	OFF	ON: DP/R to R DN/L to L	ON: SBU1 to MIC SBU2 to GND_M SBU2 to GND	OFF
ON	L	11	ON	ON	OFF	ON: DP/R to R DN/L to L	ON: SBU2 to MIC SBU1 to GND_M SBU1 to GND	OFF

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Paramete	er	Min.	Max.	Unit
V_{BAT}	Supply Voltage from VBAT			6.5	V
VBUS	Supply Voltage from VBUS		-0.5	28	V
V _{VICC}	V _{CCx} , to GND		-0.5	20	V
V _{VCC_H}	V _{CCx_H} , to GND		-0.5	6.5	V
V _{SW_USB/Audio}	V _{DP_R} to GND, V _{DN_L} to GND		-3.5	16	V
V _{SW_USB}	V _{DP} to GND, V _{DN} to GND		-0.5	6.5	V
V _{SW_Audio}	V _L to GND, V _R to GND,		-3.5	+3.5	V
V_{VSBU}	V _{SBU1} to GND, V _{SBU2} to GND,		-0.5	20	V
V_{VSBU_H}	V _{SBU1_H} to GND, V _{SBU2_H} to GND,		-0.5	6.5	V
V_{VO}	MIC,GND_M, INT,INT1to GND,		-0.5	6.5	V
V_{CNTRL}	Control Input Voltage	ENN,ENx	-0.5	6.5	V
Iccsw	CC Switch Current			1.25	Α
I _{SW_Audio}	Switch I/O Current, Audio path,		-250	250	mA
I_{SW_USB}	Switch I/O Current, USB path,			100	mA
I _{SW_MIC}	Switch I/O Current, MIC to SBU1 or SBU2			50	mA
$I_{SW_GND_M}$	Switch I/O Current, GND_M to SBU1 or SBU2	2		100	mA
I _{SW_GND}	Switch I/O Current, GND to SBU1 or SBU2			500	mA
I _{IK}	DC Input Diode Current		-50		mA
ESD	Human Body Model, ANSI/ESDA/JEDEC JS-001-2012	Connector side and power pins: VBUS, V _{BAT} , CC1, CC2, SBU1, SBU2, DP/R, DN/L	4		kV
		Host side pins: the rest pins	2		
	Charged Device Model, JEDEC: JESD22-C10	01	1		
T_A	Absolute Maximum Operating Temperature		-40	+85	°C
T_{STG}	Storage Temperature		-65	+150	°C

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance. Onsemidoes not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Тур.	Max.	Unit
Power		•	•		
VBAT	Supply Voltage	2.7		5.5	V
VBUS	Supply Voltage	4.0		20	V
USB Switch					
V _{SW_USB}	V _{DP} to GND, V _{DN} to GND, V _{DP/R} to GND, V _{DN/L} to GND	0		4.0	V
Audio Switch					
V _{SW_Audio}	V _{DP/R} to GND, V _{DN/L} to GND, V _L to GND, V _R to GND	-3		+3	V

Symbol	Parameter	Min.	Тур.	Max.	Unit
V _{SW_MIC}	MIC to GND	0		3.6	V
SBU Switch					
V_{VSBU}	V _{SBU1} to GND, V _{SBU2} to GND, V _{SBU1_H} to GND, V _{SBU2_H} to GND,	0		4.0	V
CC Switch					
V _{VICC}	V _{CCx} , to GND	0		5.5	V
V_{VCC_H}	V _{CCx_H} , to GND	0		5.5	V
Iccsw	CC Switch Current			1.25	Α
Control Voltag	ge(ENN,ENx)				
V_{IH}	Input Voltage High	1.3			V
V_{IL}	Input Voltage Low			0.5	V
Operating Te	mperature				
T _A	Ambient Operating Temperature	-40	25	+85	°C

DC Characteristics

 $VBAT = 2.7 \ V \ to \ 5.5 \ V \ or \ VBUS = 4.0 V \ to \ 20 V, \ VBAT(Typ.) = 4.3 \ V \ or \ VBUS(Typ.) = 5 V, \ T_A = -40 ^{\circ}C \ to \ 85 ^{\circ}C, \ and \ T_A (Typ.) = 25 ^{\circ}C, \ unless \ otherwise \ specified.$

Cumhal	Davamatav	Condition	Dawar	T _A =-40°C to +85°C			Unit
Symbol	Parameter	Condition	Power	Min.	Тур.	Max.	Onit
I _{CC}	VBAT Supply current		VBAT=4.3V		25		μΑ
I _{CCZ}	Quiescent current		VBAT=4.3V		5		μΑ
USB/Audio	Common Pins	1	L	1			
l _{OZ}	Off leakage current of Port DP/R and DN/L	DN/L,DP/ R=-3V to 4.0V	VBAT: 2.7V to 5.5V or VBUS: 4V to 20V	-3.0		3.0	μΑ
I _{OFF}	Power-Off leakage current of Port DP/R and DN/L	DN/L,DP/R=0V to 4.0V	Power off	-3.0		3.0	μΑ
$V_{\text{OV_TRIP}}$	Input OVP Lockout	Rising edge	VBAT: 2.7V to 5.5V	4.2	4.5	4.8	V
V _{OV_HYS}	Input OVP Hysteresis		or VBUS: 4V to 20V		0.3		٧
Audio Swi	tch			I		I	
I _{ON}	On leakage current of Audio switch	DN/L,DP/R=-3V to 3.0V, DP,DN,R,L= Float	VBAT: 2.7V to 5.5V or VBUS: 4V to 20V	-2.0	0.1	2.0	μΑ
l _{OFF}	Power-Off Leakage Current on L and R	L, R,= 0V to 3 V	Power off	-1.0		1.0	μΑ
Ron	Switch On Resistance	$I_{SW} = 100 \text{ mA}, V_{SW} = -3 \text{ V}$ to 3 V	VBAT: 2.7V to 5.5V		0.6		Ω
R _{SHUNT}	Pull down resistor on R/L Pin when Audio switch is off	L=R= 3 V	or VBUS: 4V to 20V	6	10	14	kΩ
USB Switc	h				•		
I _{ON}	On leakage current of USB switch	DN/L,DP/R=0V to 4.0V, DP,DN,R,L= Float	VBAT: 2.7V to 5.5V	-3.0	1.0	3.0	μΑ
l _{OZ}	Off leakage current of Port DP and DN	DN,DP =0V to 4.0V	or VBUS: 4V to 20V	-3.0		3.0	μΑ
I _{OFF}	Power-Off Leakage Current on DP and DN	DN,DP =0V to 4.0V	Power off	-3.0		3.0	μΑ
R _{ON_USB}	USB Switch On Resistance	$I_{SW} = 8 \text{ mA}, V_{SW} = 0.4 \text{V}$	VBAT: 2.7V to 5.5V or VBUS: 4V to 20V		3		Ω
CC Switch							
I _{ON}	On leakage Current of CC switch	Vsw from 0V to 3.6V,		-1.5		2.0	μΑ
R _{ON}	CC Path On Resistance	IOUT=200mA, Vsw =5V	VBAT: 2.7V to 5.5V or VBUS: 4V to 20V		300		mΩ
V _{OV_TRIP}	Input OVP Lockout	Rising edge		5.6	5.8	6.1	٧
V _{OV_HYS}	Input OVP Hysteresis				0.3		٧
R_d	Dead Battery pull down resistance	350uA on CCx pin	VBAT<2.4V and VBUS < 3.5V	4.08	5.1	6.12	kΩ

Symbol	Doromotor	Condition	Power	T _A =-40°C to +85°C			Unit
Symbol	Parameter	Condition	Power	-3.0 -3.0 -3.0 -3.0 -1.0 -1.0 -2 -2.0 -1.0	Тур.	Max.	Unit
V_{THR_H}	CCx_H High Threshold under headset detection	EN1=H	VBAT: 2.7V to 5.5V		1.5		V
V_{THR_L}	CCx_HLowThreshold under headset detection	EN1=H	or VBUS: 4V to 20V		1.2		V
SBU Comn	non pins						
l _{OZ}	Off leakage current of Port SBUx	SBUx= 0V to 4V	VBAT: 2.7V to 5.5V or VBUS: 4V to 20V	-3.0		3.0	μΑ
I _{OFF}	Power-Off leakage current of Port SBUx	SBUx= 0V to 4V	Power off	-3.0		3.0	μΑ
V _{OV_TRIP}	Input OVP Lockout	Rising edge	VBAT: 2.7V to 5.5V	4.2	4.5	4.8	V
V _{OV_HYS}	Input OVP Hysteresis		or VBUS: 4V to 20V		0.3		٧
MIC Switch	1						
I _{ON}	On leakage current of MIC switch	SBUx= 0V to 3.6V, MIC is floating	VBAT: 2.7V to 5.5V	-3.0		3.0	μА
l _{OZ}	Off leakage current on MIC	MIC=0V to 3.6V	or VBUS: 4V to 20V	-1.0		1.0	μΑ
I _{OFF}	Power Off leakage current on MIC	MIC=0V to 3.6V	Power off	-1.0		1.0	μΑ
R _{ON}	MIC switch On Resistance	MIC=0V to 3.6V, Isw=30mA	VBAT: 2.7V to 5.5V or VBUS: 4V to 20V		2		Ω
GND_M Sw	vitch						
l _{OZ}	Off leakage on GND_M	GND_M=0V to 3.6V	VBAT: 2.7V to 5.5V or VBUS: 4V to 20V	-2.0		2.0	μΑ
l _{OFF}	Power Off leakage current on GND_M	GND_M =0V to 3.6V	Power off	-1.0		1.0	μΑ
R _{ON}	GND_M Switch On Resistance	Isw=30mA	VBAT: 2.7V to 5.5V or VBUS: 4V to 20V		0.5		Ω
SBU Bypas	ss Switch						
I _{ON}	On leakage current of SBU bypass switch	SBUx= 0V to 4V, SBUx_H is floating		-1.0		2.0	μΑ
l _{OZ}	Off leakage current on SBUx_H	SBUx_H = 0V to 4V	VBAT: 2.7V to 5.5V or VBUS: 4V to 20V	-1.0		1.0	μΑ
R _{ON}	SBU bypass Switch On Resistance	SBUx =0V to 3.6V, Isw=50mA	5. 1200. IV to 20V		3		Ω
Internal GN	ND Switch						
Ron	Internal GND switch On Resistance	Isw=200mA	VBAT: 2.7V to 5.5V or VBUS: 4V to 20V		75	110 ^[2]	mΩ

- Limits over the recommended temperature operating range (T_A = -40°C to +85°C) are correlated by statistical quality.
 Guaranteed by characterization, not production tested

AC Characteristics

VBAT= 2.7 V to 5.5 V or VBUS= 4.0V to 20V, VBAT(Typ.) = 4.3 V or VBUS(Typ.) = 5V, $T_A = -40$ °C to 85°C. T_A (Typ.) = 25°C, unless otherwise specified.

Symbol	Parameter	Condition	Power	T _A =-40°C to +85°C			Unit
Syllibol	Parameter	Condition	Power	Min.	Тур.	Max.	
Audio Swi	tch			I	1	I	
t _{ON}	Turn On Time ⁽³⁾	$\begin{aligned} DP/R &= DN/L = 1.5 \text{ V}, \\ R_L &= 50 \Omega \end{aligned}$			55		μs
t _{OFF}	Turn OFF Time ⁽³⁾	$\begin{aligned} DP/R &= DN/L = 1.5 \text{ V}, \\ R_L &= 50 \Omega \end{aligned}$			2		μs
X _{TALK}	Cross Talk (Adjacent) (3)				-110		dB
BW	-3 dB Bandwidth ⁽³⁾	R _L = 50 Ω			950		MHz
O _{IRR}	Off Isolation ⁽³⁾	f= 1 kHz, R _L = 50 Ω, C _L = 0 pF, Vsw =1 V _{RMS}	VBAT: 4.3V		-100		dB
		$R_{L}=600~\Omega,$ $f=20Hz\sim20~kHz,$ $V_{SW}=2~V_{RMS}$	or VBUS: 5V		-110		dB
THD+N	Total Harmonic Distortion + Noise performance with A- weighting filter ⁽³⁾	$R_{L}=32~\Omega,$ $f=20Hz\sim20~kHz,$ $V_{SW}=1~V_{RMS}$			-110		dB
		$R_L = 16 \Omega,$ $f = 20Hz\sim20 \text{ kHz},$ $V_{SW} = 0.5 V_{RMS}$			-108		dB
USB Switc	ch .			<u> </u>		ı	
t _{ON}	Turn-on time ⁽³⁾	$\begin{aligned} DP/R &= DN/L = 1.5 \ V, \\ R_L &= 50 \Omega \end{aligned}$			40		μs
t _{OFF}	Turn-off time (3)	$\begin{aligned} \text{DP/R} &= \text{DN/L} = 1.5 \text{ V}, \\ \text{R}_{\text{L}} &= 50 \Omega \end{aligned}$	VDAT: 4.0V		1		μs
BW	-3dB Bandwidth ⁽³⁾	R _L =50Ω	VBAT: 4.3V or VBUS: 5V		1		GHz
O _{IRR}	Off Isolation ⁽³⁾ between DP, DN and common node pins	f= 1 kHz, R _L = 50 Ω, C _L = 0 pF, Vsw =1 V _{RMS}			-100		dB
t _{OVP}	DP/R and DN/L pins OVP Response Time ⁽³⁾	R_L = 50 Ω ,Vsw= 3.5V to 5.5 V			0.5	1.5	μs
CC Switch							
ton	Turn-On Time ⁽³⁾	$V_{ICCx}=5V$, $R_L=5k \Omega$			0.5		ms
t _{OFF}	Turn-Off Time ⁽³⁾	$V_{ICCx}=5V$, $R_L=5k$ Ω	\/D.4= \/.0\/		3		μs
BW	PD Traffic Bandwidth ⁽³⁾	R _L =50Ω	VBAT: 4.3V or VBUS: 5V		25		MHz
t _{OVP}	CCx pins OVP Response Time ⁽³⁾	R_L = 25 Ω , C_L =200pF, V_{SW} :4V to 7V	3. 1200.01		0.6	1	μs
SBUx Byp	ass Switch			1	ı	1	
t _{OVP}	SBUx pins OVP Response	R _L = 50 Ω,Vsw= 3.5V to 5.5 V	VBAT: 4.3V or VBUS: 5V		0.6	1	μs

Cumbal	Davamatav	Condition	Dower	T _A =-4	0°C to	+85°C	Unit
Symbol	Parameter	Condition	Power	Min.	Тур.	Max.	Unit
t _{ON}	Turn-On Time ⁽³⁾	Isw on SBUx=1mA and clamp to 2V, Rion MIC and			12		
toff	Turn-OFF Time ⁽³⁾	SBUx_H =1K Ω , GND_M=100mV, series 50 Ω on GND_M pin	VBAT: 4.3V or VBUS: 5V		1		μs
BW	Bandwidth ⁽³⁾	$R_L=50\Omega$			25		MHz
MIC/GND_	M/Internal GND Switch						
t _{ON_MIC}			VBAT: 4.3V or VBUS: 5V		10		μs
t _{ON_GND_M}	Turn-On Time ⁽³⁾	Isw on SBUx=1mA and			60		
t _{ON_GND}		clamp to 2V, R_L on MIC and SBUx $H = 1K \Omega$,			950		
t _{OFF} _MIC		GND_M=100mV, series 50 Ω on GND_M pin			1		
t _{OFF} _GND_M	Turn-OFF Time ⁽³⁾				1		
t _{OFF} GND					1		
BW	MIC switch Bandwidth ⁽³⁾	$R_L=50\Omega$			25		MHz
Interrupt d	elay			•	•		
T _{DELAY_INT}	INT response delay ⁽³⁾	INT pull up by 10k resistor to valid power	VBAT: 4.3V		5		
T _{DELAY_INT}	INT1 response delay ⁽³⁾	INT1 pull up by 10k resistor to valid power	or VBUS: 5V		5		μs

^{3.} Guaranteed by characterization, not production tested

Capacitance

Unless otherwise stated VBAT = 2.7 V to 5.5 V or VBUS= 4.0 V to 20 V, VBAT(Typ.) = 4.3 V or VBUS(Typ.) = 5 V, $T_A = -40^{\circ}C$ to 85°C, and $T_A (Typ.) = 25^{\circ}C$.

Cymah al	Devementer	Candition	Condition		T _A =- 4	+85°C	Unit	
Symbol	Parameter	Condition			Min.	Тур.	Max.	Unit
Con_USB/Audio	On Capacitance (Common Port) ⁽⁴⁾	f = 1 MHz, 100 mV _{PK-PK} , 100 mV DC bias				7		pF
Coff_USB/Audio	Off Capacitance (Common Port) (4)	f = 1 MHz, 100 mV _{PK-PK} , 100 mV DC bias				7		pF
C _{OFF_USB}	Off Capacitance (Non-Common Ports) ⁽⁴⁾	f = 1 MHz, 100 mV _{PK-PK} , 100 mV DC bias Figure 12				2		pF
C _{OFF_SBUx_H}	Off Capacitance (Non-Common Ports) ⁽⁴⁾	f = 1 MHz, 100 mV _{PK-PK} , 10 DC bias,	0 mV	VBAT: 4.3V or VBUS: 5V		12		pF
Coff_SBUx	Off Capacitance (Common Ports) ⁽⁴⁾	f = 1 MHz, 100 mV _{PK-PK} , 10 DC bias,	0 mV	01 4000.54		140		pF
Con_sbux	On Capacitance (Common Port) (4)	f = 1 MHz, 100 mV _{PK-PK} , 100 mV DC bias,				150		pF
C _{CNTRL}	Control Input Pin Capacitance (ENx) (4)	f = 1 MHz, 100 mV _{PP} , 100 mV DC bias	ENx,ENN			6		pF

^{4.} Guaranteed by characterization, not production tested

Application Information

Dead Battery

FSA44776 supports dead battery application. When power is not applied to FSA4476 and it is attached to a Source device, then the Source would pull up the CC line connected through the cable. FSA4476 in response would turn on the pull-down that will bring the CC voltage to a range that the Source can detect an attach event and turn on VBUS.

Headset detection

FSA4476 integrates headset unplug detection function by detecting the CCx_H voltage. The headset detection is only active during audio switch on status(EN1=1). When headset is attached(both CC1_H and CC2_H are Low), the flag signal is sent low to host controller by INT1 (INT1= low). Once either of CCx_H= High (CCx_H>1.5V), INT1 will be released to high by external pull up resistor.

Power supply configuration

VBUS	VBAT	Power supply
Invalid	Invalid	Max (VBAT, VBUS)
Valid	Invalid	VBUS
Invalid	Valid	VBAT
Valid	Valid	VBAT

Test Diagrams

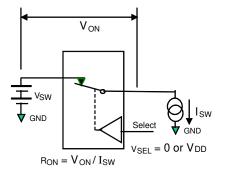


Figure 3. On Resistance

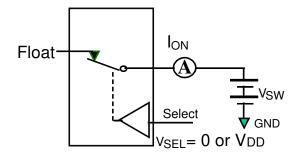


Figure 5. On Leakage

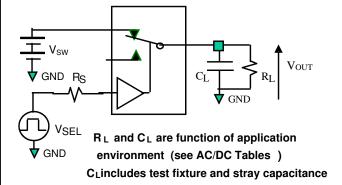


Figure 7. Test Circuit Load

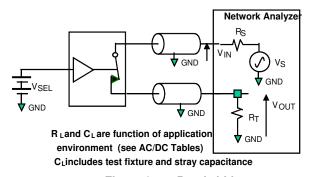


Figure 9. Bandwidth

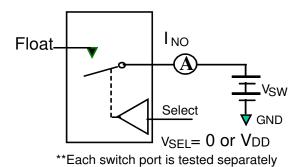


Figure 4. Off Leakage (loz)

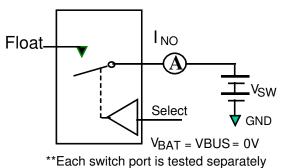


Figure 6.

Each switch port is tested separately

Power Off Leakage (loff)

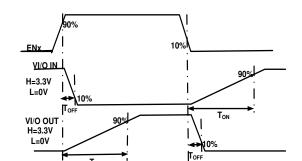
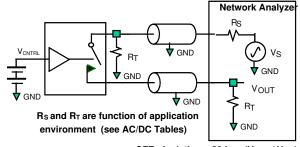



Figure 8. Turn On/Off Waveforms

OFF - Isolation = 20 Log (V_{OUT}/ V_{IN})

Figure 10. Channel Off Isolation

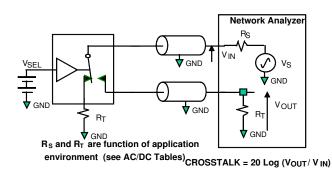


Figure 11. Adjacent Channel Crosstalk

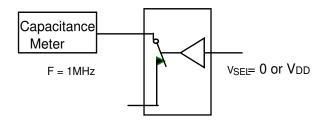


Figure 13. Channel On Capacitance

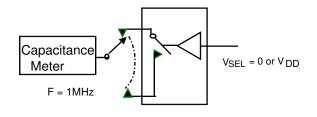


Figure 12. Channel Off Capacitance

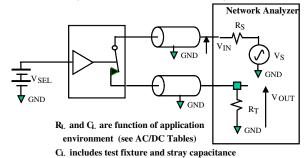


Figure 14. Total Harmonic Distortion (THD+N)

Physical Dimensions

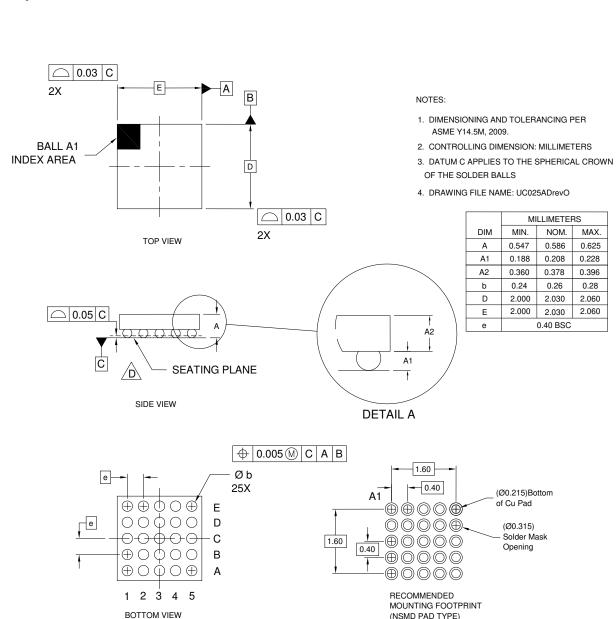


Figure 15. 25-ball WLCSP

(NSMD PAD TYPE)

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 **Japan Customer Focus Center** Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative