

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, emplo

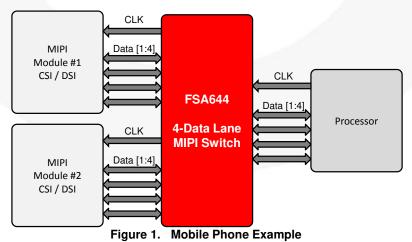
FSA644 — 2:1 MIPI D-PHY (1.5Gbps) 4-Data Lane Switch

Features

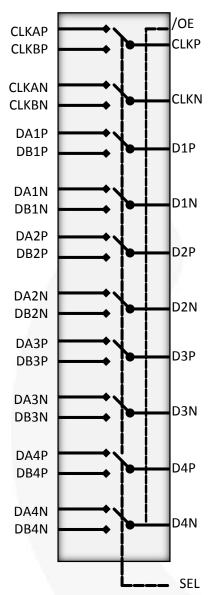
Switch Type	SPDT (10x)
Signal Types	MIPI, D-PHY
V _{CC}	1.65 to 4.5 V
Input Signals	0 to V_{CC}
Ron	$6~\Omega$ Typical HS MIPI $8~\Omega$ Typical LP MIPI
ΔR _{ON}	0.6 Ω Typical HS & LP MIPI
R _{ON_FLAT}	0.3 Ω Typical
Iccz	0.5 μA Maximum
Icc	32 μA Maximum
Oirr	-40 dB Typical
X _{TALK}	-25 dB Typical
Bandwidth	1100 MHz Minimum
Channel-to-Channel Skew	6 ps Typical
C _{ON}	5.2 pF
Operating Temperature	-40 to +85°C
Package	36-Ball WLCSP
FSA644UCX Top Mark	M7
Ordering Information	FSA644UCX
FSA644BUCX Top Mark	KM
Ordering Information	FSA644BUCX

Description

The FSA644 is a four-data-lane, MIPI, D-PHY switch. This single-pole, double-throw (SPDT) switch is optimized for switching between two high-speed or low-power MIPI sources. The FSA644 is designed for the MIPI specification and allows connection to a CSI or DSI module.


Applications

- Cellular Phones, Smart Phones
- Displays


Related Resources

FSA644 Demonstration Board

Typical Application

Pin Descriptions

Pin Name			Description
CLK _{P/N}	Commo	n Clock P	ath
D1 _{P/N}	Commo	n Data Pa	ath 1
D2 _{P/N}	Commo	n Data Pa	ath 2
D3 _{P/N}	Commo	n Data Pa	ath 3
D4 _{P/N}	Commo	n Data Pa	ath 4
CLKA _{P/N}	A-Side (Clock Patl	n
DA1 _{P/N}	A-Side I	Data Path	1
DA2 _{P/N}	A-Side I	Data Path	2
DA3 _{P/N}	A-Side I	Data Path	3
DA4 _{P/N}	A-Side I	Data Path	4
CLKB _{P/N}	B-Side (Clock Pat	n
DB1 _{P/N}	B-Side I	Data Path	1
DB2 _{P/N}	B-Side I	Data Path	2
DB3 _{P/N}	B-Side I	Data Path	3
DB4 _{P/N}	B-Side I	Data Path	4
SEL	Control	SEL=0	CLKP=CLKAP, CLKN=CLKAN, Dn(P/N)=DAn(P/N)
SEL	Pin	SEL=1	CLKP=CLKBP, CLKN=CLKBN, Dn(P/N)=DBn(P/N)
/OE	Output I	Enable	
V _{CC}	Power		
GND	Ground		
NC	No Con	nect	

Figure 2. Analog Symbol

Pin Definitions

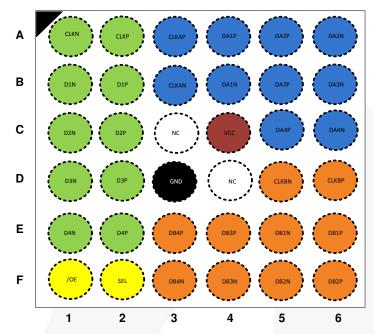


Figure 3. Top Through View

Table 1. Ball-to-Pin Mappings

Ball	Pin Name
A1	CLK _N
A2	CLK _P
A3	CLKA _P
A4	DA1 _P
A5	DA2 _P
A6	DA2 _N
B1	D1 _N
B2	D1 _P
B3	CLKA _N
B4	DA1 _N
B5	DA3 _P
B6	DA3 _N
C1	D2 _N
C2	D2 _P
C3	NC
C4	V _{CC}
C5	DA4 _P
C6	DA4 _N
D1	D3 _N
D2	D3 _P
D3	GND
D4	NC
D5	CLKB _N
D6	CLKB _P
E1	D4 _N
E2	D4 _P
E3	DB4 _P
E4	DB3 _P
E5	DB1 _N
E6	DB1 _P
F1	/OE
F2	SEL
F3	DB4 _N
F4	DB3 _N
F5	DB2 _N
F6	DB2 _P

Truth Table

SEL	/OE	Function
LOW	LOW	$CLK_P=CLKA_P$, $CLK_N=CLKA_N$, $Dn(P/N)=DAn(P/N)$
HIGH	LOW	$CLK_P=CLKB_P$, $CLK_N=CLKB_N$, $Dn(P/N)=DBn(P/N)$
X	HIGH	DAn(P/N), DBn(P/N) Data Ports High Impedance

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Parameter			Unit
Vcc	Supply Voltage		-0.50	+5.25	V
V _{CNTRL}	DC Input Voltage (/OE) ⁽¹⁾		-0.5	V _{CC}	V
V_{SW}	DC Switch I/O Voltage ⁽¹⁾		-0.50	5.25	V
I _{IK}	DC Input Diode Current		-50		mA
I _{OUT}	DC Output Current		50	mA	
T _{STG}	Storage Temperature		-65	+150	°C
		All Pins		3.5	
	Human Body Model, JEDEC: JESD22-A114	I/O to GND		3.5	
ESD		Power to GND		8.0	kV
ESD	Charged Device Model, JEDEC: JESD22-C101			1.5	K.V
	IEC 61000-4-2 System	Contact		8.0	
	ILO 01000-4-2 System	Air Gap		15.0	

Note:

1. The input and output negative ratings may be exceeded if the input and output diode current ratings are observed.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter		Min.	Max.	Unit
V _{CC}	Supply Voltage	Supply Voltage		4.50	V
V_{CNTRL}	Control Input Voltage (S, /OE) ⁽²⁾		0	Vcc	V
V	Switch I/O Voltage (CLKn, CLKAn, CLKBn, Dn,	HS Mode	0.1	0.3	M
$V_{\sf SW}$	DAn, DBn)	LP Mode	0	1.2	V
T _A	Operating Temperature		-40	+85	°C

Note:

2. The control input must be held HIGH or LOW; it must not float.

DC Electrical Characteristics

All typical values are at $T_A=25^{\circ}\text{C}$ unless otherwise specified.

Symbol	Parameter	Conditions	V 00	T _A =- 40°C to +85°C			Unit
Symbol	Parameter	Conditions	V _{CC} (V)	Min.	Тур.	Max.	Unit
V _{IK}	Clamp Diode Voltage	I _{IN} =-18 mA	2.8			-1.2	V
V _{IH}	Input Voltage High		1.65 to 4.50	1.0			٧
V _{IL}	Input Voltage Low		1.65 to 4.50			0.4	V
I _{IN}	Control Input Leakage (SEL,/OE)	V _{SW} =0 to V _{CC}	1.65 to 4.50	-100		100	nA
I _{NO(OFF)} , I _{NC(OFF)}	Off Leakage Current of Port CLKAn, DAn, CLKBn, DBn	CLKn, Dn=0.3 V; V_{CC} -0.3 V; CLKAn, DAn, or CLKBn; DBn= V_{CC} -0.3 V, 0.3 V, or Floating; /OE=0 V	1.65 to 4.50	-100		100	nA
I _{A(ON)}	On Leakage Current of Common Ports (CLKn, Dn)	CLKn, Dn = 0.3 V; V_{CC} -0.3 V; CLKAn, DAn, or CLKBn; DBn= V_{CC} -0.3 V, 0.3 V, or Floating; /OE=0 V	1.65 to 4.50	-100		100	nA
l _{OFF}	Power-Off Leakage Current	CLKn, Dn, or CLKAn; DAn or CLKBn, DBn; V _{IN} =0 V to 4.5 V; V _{CC} =0 V	0	-100		100	nA
loz	Off-State Leakage	0 ≤ CLKn, Dn, CLKAn, CLKBn, DAn, DBn ≤ 3.6 V, /OE=High	4.5	-100		100	nA
	Switch On Resistance for HS MIPI Applications ⁽³⁾		1.8		7	12	
		I _{ON} =-10 mA, /OE=0 V, SEL=V _{CC} or 0V, CLK _{A, B} , DBn	2.5		6	9	Ω
R _{ON_MIPI_HS}		or DAn=0.1, 0.2, 0.3	3.6		6	9	12
			4.5		6	9	
	Switch On Resistance for LP MIPI Applications ⁽³⁾	I _{ON} =-10 mA, /OE=0 V, SEL=V _{CC} or 0V, CLK _{A, B} , DBn or DAn=0, 0.6, 1.2 V	1.8		6.7	12.0	Ω
R _{ON_MIPI_LP}			2.5		6.4	9.0	
TION_MIPI_LP			3.6		6.2	9.0	
			4.5		6.0	9.0	
	O D : . M . I :	10 10 07	1.8		0.8		
$\Delta R_{ON_MIPI_HS}$	On Resistance Matching Between HS MIPI	I _{ON} =-10 mA, /OE=0 V, SEL=V _{CC} or 0 V, CLK _{A, B} , DBn	2.5		0.6		Ω
Zi tON_IMIFI_H3	Channels ⁽⁴⁾	or DAn=0.1, 0.2, 0.3	3.6		0.5		
			4.5		0.5		
	On Resistance Matching	I _{ON} =-10 mA, /OE=0 V,	1.8		0.8		
ΔR _{ON} MIPI LP	Between LP MIPI	SEL=V _{CC} or 0 V, CLK _{A,B} , DBn	2.5		0.6		Ω
0.1	Channels ⁽⁴⁾	or DAn= 0.0, 0.6, 1.2 V	3.6		0.5		
			4.5		0.5		
		lov- 10 mA /OE-0 V	1.8		1.5		
RON FLAT MIPI HS	On Resistance Flatness for	I _{ON} =-10 mA, /OE=0 V, SEL=V _{CC} or 0 V, CLK _{A, B} , DBn	2.5		0.5		Ω
ON_FLAT_MIPI_HS	HS MIPI Signals ⁽⁴⁾	or DAn=0.1, 0.2, 0.3	3.6		0.3		
			4.5		0.2		
		I _{ON} =-10 mA, /OE=0 V,	1.8		35		
R _{ON_FLAT_MIPI_LP}	On Resistance Flatness for	SEL=V _{CC} or 0 V, CLK _{A, B} , DB _n	2.5		2		Ω
	LP MIPI Signals ⁽⁴⁾	or DAn=0.0, 0.6, 1.2 V	3.6		1		
			4.5		0.5		

Continued on the following page...

DC Electrical Characteristics

All typical values are at T_A=25°C unless otherwise specified.

Cumbal	Davamatav	Conditions	V 00	T _A =- 40°C to +85°C			l lmi4
Symbol	Parameter	Conditions	V _{cc} (V)	Min.	Тур.	Max.	Unit
I _{CCZ}	Quiescent Hi-Z Supply Current	V _{IN} =0 or V _{CC} , I _{OUT} =0	4.5			0.5	μΑ
1	Quiescent Supply Current	V _{IN} =0 or V _{CC} , I _{OUT} =0	2.5 to 4.5			32	
Icc	Quiescent Supply Current	VIN=U UI VCC, IOUT=U	1.8			22	μΑ
1	Increase in I _{CC} Current Per	V _{SEL,/OE} =1.65 V	4.5			4	
ICCT	Control Voltage and V _{CC}	VSEL,/OE=1.00 V	2.5			0.1	μΑ

Notes:

- 3. Measured by the voltage drop between A and B pins at the indicated current through the switch. On resistance is determined by the lower of the voltage on the two (A or B ports).
- 4. Guaranteed by characterization.

AC Electrical Characteristics

All typical values are for V_{CC}=3.3V at T_A=25°C unless otherwise specified.

O. mah al	Dawawatan	0 1111	V 00	T _A =-	40°C to +	85°C	l lni4
Symbol	Parameter	Conditions	V _{cc} (V)	Min.	Тур.	Max.	Unit
	Initalization Time	D 5000 C 5 5 V 10V	2.5 to 4.5			100	
t _{INIT}	V _{CC} to Output ⁽⁵⁾	$R_L=50 \Omega$, $C_L=5 pF$, $V_{SW}=1.2 V$	1.8			150	μs
	Enable Turn-On Time,	D 500 C 5 5 V 10V	2.5 to 4.5		120	200	no
t _{EN}	/OE to Output	$R_L=50 \Omega, C_L=5 pF, V_{SW}=1.2 V$	1.8		250	500	ns
	Disable Turn-Off Time,	D 50 0 C 5 5 V 10 V	2.5 to 4.5		25	50	200
t _{DIS}	/OE to Output $R_L=50 \Omega$, $C_L=5 pF$, $V_{SW}=1.2 V$	1.8		50	90	ns	
	Turn-On Time,	D 5000 C 5=5 V 10V	2.5 to 4.5		50	100	
ton	SEL to Output	$R_L=50 \Omega$, $C_L=5 pF$, $V_{SW}=1.2 V$	1.8		75	125	ns
	Turn-Off Time	D 5000 C 5=5 V 10V	2.5 to 4.5	1/	50	200	
toff	SEL to Output	$R_L=50 \Omega$, $C_L=5 pF$, $V_{SW}=1.2 V$	1.8	/	200	325	ns
t _{BBM}	Break-Before-Make Time	R _L =50 Ω, C _L =5 pF, V _{SW} =1.2 V		10	50		ns
O _{IRR}	Off Isolation for MIPI ⁽⁵⁾	R_L =50 Ω , f=750 MHz, /OE= V_{CC} V_{SW} =-1 dBm (200 m V_{PP})	1.65 to 4.5		-18		dB
X _{TALK}	Crosstalk for MIPI ⁽⁵⁾	R _L =50 Ω, f=750 MHz, V _{SW} =-1 dBm (200 mV _{PP})	1.65 to 4.5		-25	10	dB
BW	-3db Bandwidth ⁽⁵⁾	R _L =50 Ω, C _L =0 pF	3.0	1100	1600	V. II. N	MHz
S _{DD21}	Differential Data Rate	Inter-operability Data Rate	3.0		1.5		Gbps

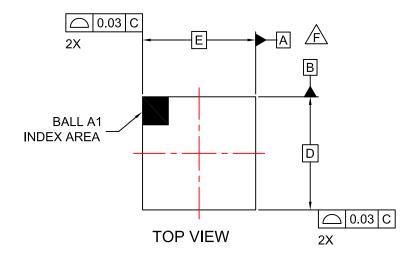
Note:

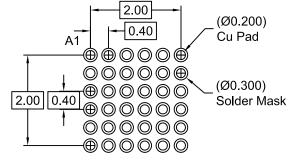
5. Guaranteed by characterization.

High-Speed-Related AC Electrical Characteristics

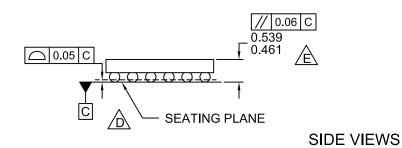
Symbol	Parameter	neter Conditions V _{cc} (V)	V 00	T _A =- 4	Unit		
Symbol	Parameter		V _{CC} (V)	Min.	Тур.	Max.	Unit
t _{SK(O)}	Channel-to-Channel Single- Ended Skew ⁽⁶⁾	TDR-Based Method (V _{SW} =0.2 V _{PP} , C _L =C _{ON})	3.3		6	20	ps
t _{SK(P)}	Skew of Opposite Transitions of the Same Output ⁽⁶⁾	TDR-Based Method (V _{SW} =0.2 V _{PP} , C _L =C _{ON})	3.3		6	20	ps

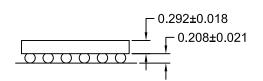
Note:

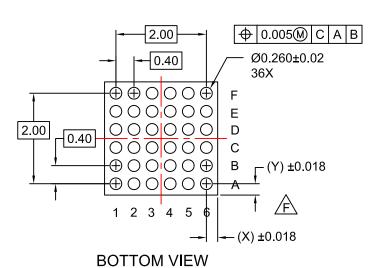

6. Guaranteed by characterization.


Capacitance

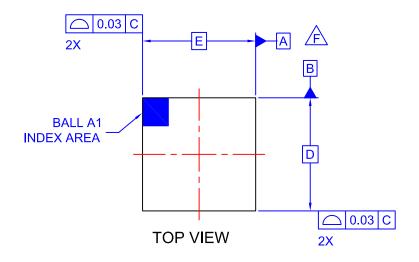
Symbol	Parameter	Conditions	T _A =- 4	l lmi4		
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
C _{IN}	Control Pin Input Capacitance	V _{CC} =0 V, f=1 MHz	1	2.1		
C _{ON}	Out On Capacitance	V _{CC} =3.3 V, /OE=0 V, f=1 MHz		5.2		pF
C _{OFF}	Out Off Capacitance	V _{CC} and /OE=3.3 V, f=1 MHz		2.0		

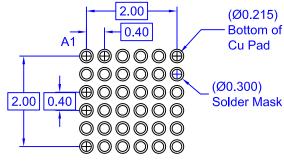

Ordering Information

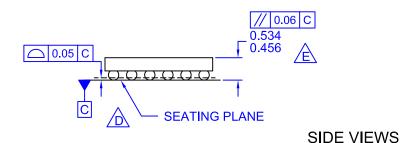

	Part umber	Top Mark	Package	D	E	x	Y
FSA	A644UCX	M7	36-Ball WLCSP, Non-JEDEC 2.36 mm x 2.36 mm, 0.4 mm Pitch	2.36 mm	2.36 mm	0.18 mm	0.18 mm
FSA	644BUCX	K I\/I	36-Ball WLCSP, Non-JEDEC 2.415 mm x 2.415 mm, 0.4 mm Pitch	2.415 mm	2.415 mm	0.208 mm	0.208 mm

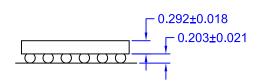


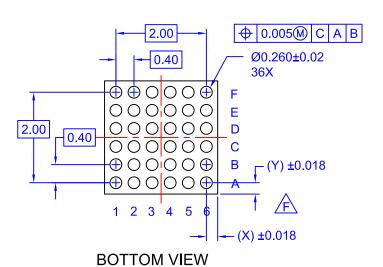
RECOMMENDED LAND PATTERN (NSMD PAD TYPE)






NOTES


- A. NO JEDEC REGISTRATION APPLIES.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCE PER ASMEY14.5M, 1994.
- D. DATUM C IS DEFINED BY THE SPHERICAL CROWNS OF THE BALLS.
- PACKAGE NOMINAL HEIGHT IS 500 ± 39 MICRONS (461-539 MICRONS).
- FOR DIMENSIONS D, E, X, AND Y SEE PRODUCT DATASHEET.
 - G. DRAWING FILNAME: MKT-UC036AArev1.



RECOMMENDED LAND PATTERN (NSMD PAD TYPE)

NOTES

- A. NO JEDEC REGISTRATION APPLIES.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCE PER ASMEY14.5M, 2009.
- D. DATUM C IS DEFINED BY THE SPHERICAL CROWNS OF THE BALLS.
- E. PACKAGE NOMINAL HEIGHT IS 495 ± 39 MICRONS (456-534 MICRONS).
- F. FOR DIMENSIONS D, E, X, AND Y SEE PRODUCT DATASHEET.
- G. DRAWING FILNAME: MKT-UC036AB REV1.

ON Semiconductor and III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.

Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative