: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Is Now Part of

ON Semiconductor ${ }^{\circledR}$

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

[^0]
FSA859－Dual－Voltage， 0.8Ω SPDT Analog Switch with Power－Off Isolation

Features

－Power－Off Isolation（ $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ ）
－ 0.8Ω Maximum On Resistance（ R_{ON} ）for $4.5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$
－ 0.25Ω Maximum $R_{O N}$ Flatness for $4.5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$
－Broad V_{CC} Operating Range： 1.65 V to 5.5 V
－Fast Turn－On and Turn－Off Times
－Control Input Referenced to V_{IO}
－Break－Before－Make Enable Circuitry
－ 0.5 mm WLCSP packaging
－ESD Performance
－HBM：JESD22－A114，I／O to GND 8kV
－CDM：JESD22－C101 500V
－IEC61000－4－2 Contact／Air 8kV／15kV

Applications

－Cellular Phone
－Portable Media Player
－PDA

Description

The FSA859 is a high－performance Single－Pole／ Double－Throw（SPDT）analog switch for audio applications driven by low voltage（ 1.8 V ）baseband processors or ASICs．The device features ultra－low R_{ON} of 0.8Ω（maximum）at $4.5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ and operates over the wide V_{CC} range of 1.65 V to 5.5 V ．The device is fabricated with sub－micron CMOS technology to achieve fast switching speeds and is designed for break－before－ make operation．

The FSA859 interfaces between the low－voltage ASIC and regular audio amplifiers and CODECs operating up to the supply range of 5.5 V through the dual－voltage supplies of V_{10} and V_{CC} ．The V_{10} supply operates the control circuitry，allowing for 1.8 V （typical）signals on the control pin（Sel）．

IMPORTANT NOTE：

For additional performance information，please contact analogswitch＠fairchildsemi．com．

Ordering Information

Part Number	Operating Temperature Range	Top Mark	Eco Status	Package	Packing Method
FSA859UCX	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	N 2	Green	8 －Ball WLCSP， 0.5 mm pitch	Tape and Reel

For Fairchild＇s definition of＂green＂Eco Status，please visit：http：／／www．fairchildsemi．com／company／green／rohs green．html．

Analog Symbols

Figure 1．Analog Symbol

Marking Information

> KK $=$ Lot Run Code
> $\mathrm{X}=$ Year
> $\mathrm{Y}=$ Work Week
> $\mathrm{Z}=$ Assembly Site

Figure 2. Top Mark with Pin 1 Orientation

Pin Configuration

Figure 3. Pin Assignments (Top Through View)

Pin Definitions

Pin	Ball	Name	Description
1	A1	B1	Data Port (Normally Open)
2	B1	GND	Ground
3	C1	B0	Data Ports (Normally Closed)
4	D1	V_{IO}	Digital Control Supply
5	D2	V_{CC}	Supply Voltage
6	C2	Sel	Control Input
7	B2	A	Common Data Port
8	A2	GND	Ground

Truth Table

Control Input (Sel)	Function
LOW	B0 connected to A
HIGH	B1 connected to A

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter			Min.	Max.	Unit
V_{Cc}	Supply Voltage			-0.5	6.5	V
V_{10}	Digital Control Supply Voltage			-0.5	6.5	V
$\mathrm{V}_{\text {sw }}$	Switch Voltage ${ }^{(1)}$			-0.5	$\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{V}_{\text {IN }}$	Input Voltage ${ }^{(1)}$			-0.5	6.5	V
$\mathrm{I}_{\text {IK }}$	Input Diode Current				-50	mA
$\mathrm{I}_{\text {SW }}$	Switch Current (Continuous)				200	mA
$\mathrm{I}_{\text {SWPEAK }}$	Peak Switch Current \quad Pulsed at 1ms Duration, <10\% Duty Cycle				400	mA
P_{D}	Power Dissipation at $85^{\circ} \mathrm{C}$				180	mW
$\mathrm{T}_{\text {STG }}$	Storage Temperature Range			-65	+150	${ }^{\circ} \mathrm{C}$
T_{J}	Maximum Junction Temperature				+150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature (Soldering, 10 seconds)				+260	${ }^{\circ} \mathrm{C}$
ESD	Human Body Model (JEDEC: JESD22-A114)		I/O to GND: A		8	kV
			All Pins		2	
	Charged Device Model (JEDEC: JESD22-C101)				500	V
	Machine Model (JEDEC: JESD22-A115)				100	V
	IEC6100-4-2 Discharge system test performed on Fairchild's FSA859 applications testing board		Contact		8	kV
			Air		15	

Note:

1. The input and output negative ratings may be exceeded if the input and output diode current ratings are observed.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Max.	Unit
V_{CC}	Supply Voltage	1.65	5.50	V
$\mathrm{~V}_{1 \mathrm{O}}$	Digital Control Supply	1.65	1.95	V
Sel	Control Input Voltage $^{(2)}$	0	$\mathrm{~V}_{1 \mathrm{O}}$	V
V_{SW}	Switch Input Voltage	0	$\mathrm{~V}_{\mathrm{CC}}$	V
T_{A}	Operating Temperature	-40	+85	${ }^{\circ} \mathrm{C}$
θ_{JA}	Thermal Resistance, Still Air		350	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Note:

2. Control Input must be held HIGH or LOW; it must not float.

Electrical Characteristics

All typical values are at $25^{\circ} \mathrm{C}$ unless otherwise specified. $\mathrm{V}_{10}=1.65$ to 1.95 V .

Symbol	Parameter	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	Conditions	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$		Unit
				Min.	Typ.	Max.	Min.	Max.	
$\mathrm{V}_{\text {IHIO }}$	Input Voltage High - V_{10}	1.95 to 5.50					$0.65 \cdot \mathrm{~V}_{10}$	V_{10}	V
$\mathrm{V}_{\text {ILIO }}$	Input Voltage Low - V_{10}	1.95 to 5.50					0	$0.35 \cdot \mathrm{~V}_{10}$	V
I_{N}	Control Input Leakage	1.95 to 5.50	$\mathrm{V}_{\text {Sel }}=0$ or V_{10}	-2		2	-20	20	nA
$\mathrm{I}_{\text {No(OFF), }}$ $\mathrm{I}_{\mathrm{Nc}(\mathrm{OFF}),}$	Off-Leakage Current of Port B0 and B1 ${ }^{(6)}$	5.50	$\begin{aligned} & A=1 \mathrm{~V}, 4.5 \mathrm{~V} \\ & B 0 \text { or } B 1=4.5,1 \mathrm{~V} \end{aligned}$	-10		10	-50	50	nA
		3.60	$\begin{aligned} & A=1 \mathrm{~V}, 3.0 \mathrm{~V} \\ & B 0 \text { or } B 1=3.0,1 \mathrm{~V} \end{aligned}$	-10		10	-50	50	
		2.70	$\begin{aligned} & A=0.5 \mathrm{~V}, 2.3 \mathrm{~V} \\ & \mathrm{~B} 0 \text { or } \mathrm{B} 1=2.3,0.5 \mathrm{~V} \end{aligned}$	-10		10	-50	50	
		1.95	$\begin{aligned} & \mathrm{A}=0.3 \mathrm{~V}, 1.65 \mathrm{~V} \\ & \mathrm{~B} 0 \text { or } \mathrm{B} 1=1.65,0.3 \mathrm{~V} \end{aligned}$	-5		5	-20	20	
$\mathrm{I}_{\mathrm{No}(\mathrm{On}) \text {, }}$ $\mathrm{I}_{\mathrm{NC}\left(\mathrm{O}_{\mathrm{n}}\right)}$	On-Leakage Current of Port B0 and B1 ${ }^{(6)}$	5.50	$\begin{aligned} & \mathrm{A}=\text { float } \\ & \mathrm{B} 0 \text { or } \mathrm{B} 1=4.5,1 \mathrm{~V} \end{aligned}$	-20		20	-100	100	nA
		3.60	$\begin{aligned} & \mathrm{A}=\text { float } \\ & \mathrm{B} 0 \text { or } \mathrm{B} 1=3.0,1 \mathrm{~V} \end{aligned}$	-10		10	-20	20	
		2.70	A=float $B 0$ or $B 1=2.3,0.5 V$	-10		10	-20	20	
		1.95	$\begin{aligned} & \mathrm{A}=\text { float } \\ & \mathrm{B} 0 \text { or } \mathrm{B} 1=1.65,0.3 \mathrm{~V} \end{aligned}$	-5		5	-20	20	
$\mathrm{I}_{\mathrm{A}(\mathrm{ON})}$	On Leakage Current of Port A	5.50	$\mathrm{A}=1 \mathrm{~V}, 4.5 \mathrm{~V}$; B0 or $\mathrm{B} 1=1 \mathrm{~V}, 4.5 \mathrm{~V}$ or floating	-20		20	-100	100	nA
		3.60	$\mathrm{A}=1 \mathrm{~V}, 3.0 \mathrm{VB0} 0 \text { or } \mathrm{B} 1=1 \mathrm{~V} \text {, }$ 3.0V or floating	-10		10	-20	20	
		2.70	$\begin{aligned} & \mathrm{A}=0.5 \mathrm{~V}, 2.3 \mathrm{~V}, \mathrm{B0} \text { or } \\ & \mathrm{B} 1=0.5 \mathrm{~V}, 2.3 \mathrm{~V} \text {, or } \end{aligned}$ floating	-10		10	-20	20	
		1.95	$\mathrm{A}=0.3 \mathrm{~V}, 1.65 \mathrm{~V}$; B0 or $\mathrm{B} 1=0.3 \mathrm{~V}, 1.65 \mathrm{~V}$, or floating	-5		5	-20	20	
loff	Power Off Leakage Current of Port A \& Port $\mathrm{B}^{(6)}$	0	$\begin{aligned} & \mathrm{A}=0 \text { to } 5.5 \mathrm{~V} \\ & \mathrm{~B} 0 \text { or } \mathrm{B} 1=0 \text { to } 5.5 \mathrm{~V} \end{aligned}$	-1.00	0.01	1.00	-5.00	5.00	$\mu \mathrm{A}$
I_{Cc}	Quiescent Supply Current	5.50	$\mathrm{V}_{\text {IN }}=0$ or $\mathrm{V}_{\text {CC, }}$, $\mathrm{l}_{\text {OUT }}=0$		10	50		500	nA
		3.60	$\mathrm{V}_{\text {IN }}=0$ or $\mathrm{V}_{\text {CC, }}$, $\mathrm{l}_{\text {lut }}=0$		1.0	25.0		100.0	
		2.70	$\mathrm{V}_{\text {IN }}=0$ or $\mathrm{V}_{\text {CC, }}$, $\mathrm{l}_{\text {lout }}=0$		0.5	20.0		50.0	
		1.95	$\mathrm{V}_{\mathrm{IN}}=0$ or $\mathrm{V}_{\text {CC, }}$, $\mathrm{l}_{\text {OUT }}=0$		0.5	15.0		50.0	

Continued on the following page...

Electrical Characteristics (Continued)

All typical values are at $25^{\circ} \mathrm{C}$ unless otherwise specified. $\mathrm{V}_{10}=1.65$ to 1.95 V .

Symbol	Parameter	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	Conditions	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$		Unit
				Min.	Typ.	Max.	Min.	Max.	
$\mathrm{R}_{\text {ON }}$	Switch On Resistance ${ }^{(3,6)}$	4.50	$\begin{aligned} & \text { lout }=-100 \mathrm{~mA}, \\ & \mathrm{BO} \text { or } \mathrm{B} 1=2.5 \mathrm{~V} \end{aligned}$		0.50	0.75		0.80	Ω
		3.00	$\begin{aligned} & \text { Iout }=-100 \mathrm{~mA}, \\ & \mathrm{~B} 0 \text { or } \mathrm{B} 1=2.0 \mathrm{~V} \end{aligned}$		0.75	0.90		1.2	
		2.25	$\begin{aligned} & \hline \text { lout }=-100 \mathrm{~mA} \\ & \mathrm{B0} 0 \text { or } \mathrm{B} 1=1.8 \mathrm{~V} \end{aligned}$		1.0	1.3		1.6	
		1.65	$\begin{aligned} & l_{\text {out }=-100 \mathrm{~mA}} \\ & \mathrm{BO} \text { or } \mathrm{B} 1=1.2 \mathrm{~V} \end{aligned}$		2.5	5.0		7.0	
$\Delta \mathrm{R}_{\text {ON }}$	On Resistance Matching Between Channels ${ }^{(4,6)}$	4.50	$\begin{aligned} & \mathrm{I}_{\text {Out }}=-100 \mathrm{~mA}, \\ & \mathrm{BO} \text { or } \mathrm{B} 1=2.5 \mathrm{~V} \end{aligned}$		0.05	0.10		0.10	Ω
		3.00	$\begin{aligned} & \text { lout }=-100 \mathrm{~mA}, \\ & \mathrm{BO} \text { or } \mathrm{B} 1=2.0 \mathrm{~V} \end{aligned}$		0.10	0.15		0.15	
		2.25	$\begin{aligned} & \text { lout }=-100 \mathrm{~mA}, \\ & \mathrm{~B} 0 \text { or } \mathrm{B} 1=1.8 \mathrm{~V} \end{aligned}$		0.15	0.20		0.20	
		1.65	$\begin{aligned} & \text { lout }=-100 \mathrm{~mA}, \\ & \mathrm{~B} 0 \text { or } \mathrm{B} 1=1.2 \mathrm{~V} \end{aligned}$		0.15	0.40		0.40	
$\mathrm{R}_{\text {FLat(on) }}$	On Resistance Flatness ${ }^{(5,6)}$	4.50	$\mathrm{I}_{\text {Out }}=-100 \mathrm{~mA}, \mathrm{B0}$ or $\mathrm{B} 1=1.0 \mathrm{~V}, 1.5 \mathrm{~V}, 2.5 \mathrm{~V}$		0.075	0.250		0.250	Ω
		3.00	$\begin{aligned} & \text { lout }=-100 \mathrm{~mA}, \\ & \mathrm{BO} \text { or } \mathrm{B} 1=0.8 \mathrm{~V}, 2.0 \mathrm{~V} \end{aligned}$		0.1	0.3		0.3	
		2.25	$\mathrm{I}_{\text {out }}=-100 \mathrm{~mA}$, B 0 or $\mathrm{B} 1=0.8 \mathrm{~V}, 1.8 \mathrm{~V}$		0.25	0.50		0.6	
		1.65	$\begin{aligned} & \text { lout }=-100 \mathrm{~mA}, \\ & \mathrm{~B} \text { or } \mathrm{B} 1=0.6 \mathrm{~V}, 1.2 \mathrm{~V} \end{aligned}$		3.5				

Notes:

3. On resistance is determined by the voltage drop between A and B pins at the indicated current through the switch.
4. $\Delta \mathrm{R}_{\mathrm{ON}}=\mathrm{R}_{\mathrm{ON}}$ maximum - R_{ON} minimum measured at identical V_{CC}, temperature, and voltage.
5. Flatness is defined as the difference between the maximum and minimum value of on resistance over the specified range of conditions.
6. Guaranteed by characterization, not production tested for $\mathrm{V}_{\mathrm{CC}}=1.65-1.95 \mathrm{~V}$.

AC Electrical Characteristics

All typical value are at $\mathrm{V}_{1 \mathrm{O}}=1.8 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}, 2.5 \mathrm{~V}, 3.0 \mathrm{~V}$, and 5.0 V at $25^{\circ} \mathrm{C}$ unless otherwise specified.

Capacitance

Symbol	Parameter	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	Conditions	$\mathrm{T}_{\mathrm{A}=+25}{ }^{\circ} \mathrm{C}$			Unit
				Min.	Typ.	Max.	
$\mathrm{C}_{\text {IN }}$	Control Pin Input Capacitance	0	$\mathrm{f}=1 \mathrm{MHz}$		3.2		pF
$\mathrm{CofF}^{\text {a }}$	B Port Off Capacitance	1.65 to 5.50	$\mathrm{f}=1 \mathrm{MHz}$		50		pF
Con	A Port On Capacitance	1.65 to 5.50	$\mathrm{f}=1 \mathrm{MHz}$		150		pF

Test Diagrams

C_{L} includes fixture and stray capacitance.

Logic input waveforms inverted for switches that have the opposite logic sense.

Figure 4. Turn On / Off Timing

C_{L} includes fixture and stray capacitance.

Figure 5. Break-Before-Make Timing

Figure 6. Off Isolation and Crosstalk

Test Diagrams (Continued)

Figure 7. Charge Injection

Figure 8. On / Off Capacitance Measurement Setup

Figure 9. Bandwidth

Figure 10. Harmonic Distortion

Physical Dimensions

Figure 11. 8-Ball, WLCSP 0.5mm Pitch
Table 1. Product Specific Dimensions

Product	\mathbf{D}	\mathbf{E}	\mathbf{X}	\mathbf{Y}
FSA859UCX	1.910	0.910	0.205	0.205

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Comporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our extemal website, www.fairchildsemi.com, under Sales Support.
Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience mary problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our neb page cited above. Products oustomers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide aocess to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide ary warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is cormitted to cormbat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCTSTATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Abstract

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

[^0]:

 is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

