imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

FSA9480 — USB 2.0 Accessory Switch

Features

- Automatically Detects USB Accessories:
 - USB OTG Mode
 - CEA-936-A Car Kit and Chargers
 - Headsets

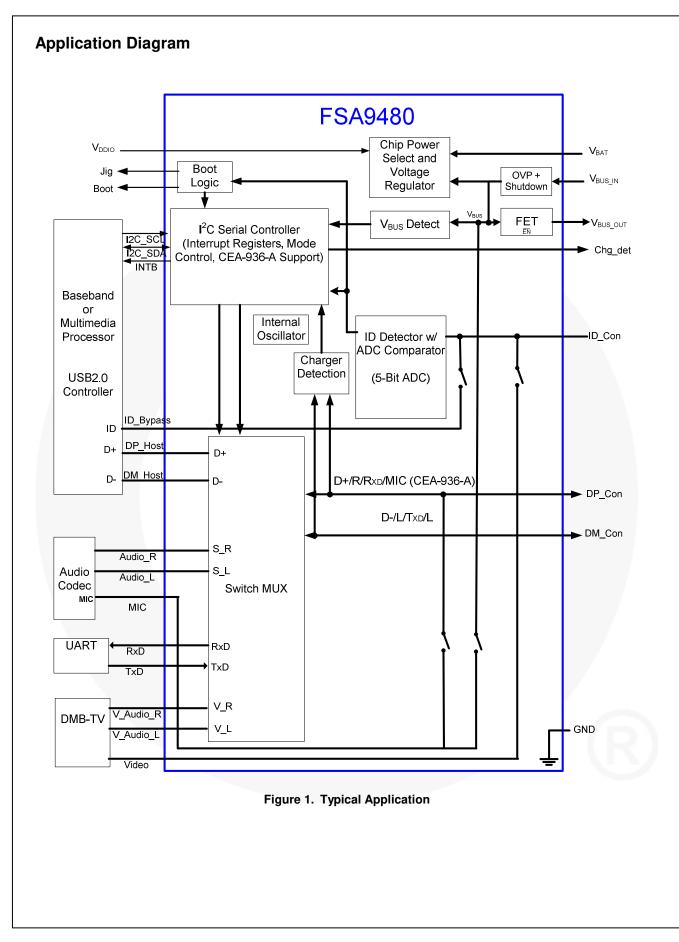
SEMICONDUCTOR

- Video Cable
- Factory Mode Cables
- UART
- TTY Converter
- USB Data Cable
- Chargers
- Auto-configures Connections with Independent Override Capability
- Integrated Audio Amplifier Generates Required Bias for CEA-936-A Car Kit Audio
- Automatic Low-Power Mode When No Accessory is Attached
- Integrated Over-Voltage and Over Current Protection FET on V_{BUS} for Fault Isolation
- Negative-Swing-Capable Audio Channel

Applications

Cell Phones

Description


The FSA9480 is a USB port accessory detector and switch. The FSA9480 is fully controlled using I^2C^{TM} and enables USB data, stereo and mono audio, video, microphone, and UART data to use a common connector port. It is designed for compatibility with CEA-936-A car kit adapters, USB 2.0 signaling, and USB OTG (on-the-go). The architecture is designed to allow audio signals to swing below ground so a common USB and headphone jack can be used for personal media players and portable peripheral devices.

The FSA9480 meets USB specification Rev. 2.0, micro-USB specification, and CEA-936-A.

Ordering Information

Part Number	Operating Temperature Range	Top Mark	Package
FSA9480UCX	-40 to +85°C	N4	25-Lead, 2.1x2.1x0.625mm WLCSP Package

 I^2C^{TM} is a trademark of NXP B.V. Corporation.

Block Descriptions

This block is used for factory-mode test and debug as described in Table 1.

Table 1. Boot Table

Factory Mode	ID Resistor	JIG	BOOT	Switch Connections
UART, Boot Off	523KΩ	LOW	LOW	Table 3 - Accessory Auto Configuration Table
USB, Boot On	301KΩ	LOW	HIGH	Table 3 - Accessory Auto Configuration Table
USB, Boot Off	255KΩ	LOW	LOW	Table 3 - Accessory Auto Configuration Table
UART, Boot On	619KΩ	LOW	HIGH	Table 3 - Accessory Auto Configuration Table
No Factory Mode	N/A	Hi-Z	LOW	See Notes 1 and 2

Notes:

1. JIG pin description: Low signals the phone to power up. When disabled this open drain floats and the pin is Hi-Z

2. BOOT pin description: This boot pin level directs the baseband processor which mode to boot in when the JIG box is attached, the JIG pin has been driven LOW, and the phone is powered up.

D+, D- Charger Detection

This block monitors D+ and D- to determine when a USB charger or dedicated charger is attached to the phone. The detection scheme follows the dedicated charger-detect algorithm as defined in the USB Implementers Forum Battery Charging Specification and as described in the CEA-936-A USB car kit specification. The FSA9480 distinguishes between a dedicated charger and USB charger and reports the appropriate type in the Device Type 1 Register. Whenever either type of charger is detected, the CHG_DET (I_{SET}) pin is pulled LOW.

Chip Power Select and Voltage Regulator

This block independently selects V_{BUS_IN} or V_{BAT} to power the FSA9480 and includes necessary LDO voltage regulators to provide stable power.

Valid ranges (for detecting and accepting supply) for: V_{BAT} : 3.0V to 4.4V V_{BUS} : 4.4V to 5.5V.

Voltage reference selection criteria:

- If V_{BUS} is present and in the valid range, the device takes its power from V_{BUS}. Otherwise, the device takes its power from V_{BAT} (if in valid range).
- If the device is operating on V_{BAT} and a valid V_{BUS} becomes available, the device switches to the V_{BUS} reference.

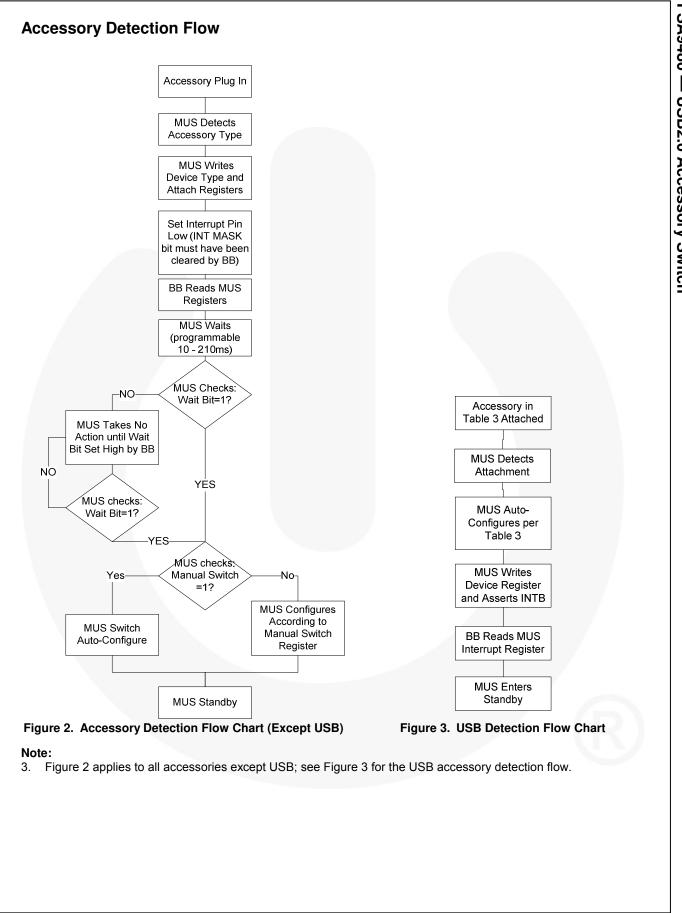
This block also accepts a V_{DDIO} voltage reference for baseband interface I/O signals.

OVP / OCP Shutdown Block

When V_{BUS} is less than 6.8V, this block allows the V_{BUS} supply to enter the chip power select voltage regulator block. For V_{BUS} greater than 7.2V, the input is disconnected, protecting the FSA9480 from excess voltage. This block is capable of withstanding continuous 28V in shutdown mode. Upon entering shutdown, the OVP_EN bit in the Interrupt 1 Register is set HIGH and an interrupt is sent to the baseband. The Over-Current Protection (OCP) feature limits current through the charger FET to $\leq 1.5A$ maximum. The FSA9480 automatically senses an over-current event,

clamps the current, and reports to the baseband by asserting OCP_EN in the Interrupt 1 Register. OCP mode is only implemented when V_{BUS} is provided by the attached accessory. In PPD Mode *(see below)*, the FSA9480 does not limit current supplied by the phone.

V_{BUS} Detect and FET Blocks


This block monitors the status of the V_{BUS} pin. A valid V_{BUS} level is defined as V_{BUS} greater than 4.4V and less than 5.5V. When V_{BUS} is determined to be valid, the internal NMOS charging FET is enabled, allowing battery charging whenever a valid V_{BUS} is present. The charging FET is designed to limit inrush current to 100mA during enable to allow the voltage levels to stabilize during initial connection. This current limiting is automatic and designed per the requirements outlined in the USB Battery Charging Specification.

I²C[™] and Digital Core Block

This block includes a full I^2C slave controller. The I^2C slave fully complies with the I^2C specification version 2.1 requirements. This block also includes the FSA9480 chip master controller. The chip controller monitors commands sent to the FSA9480 via I^2C from the baseband and takes action. The FSA9480 digital core takes inputs from the various functional blocks within the FSA9480 and the I^2C commands received from the phone baseband and relays relevant status updates to the phone.

ID Detector with Analog Digital Converter (ADC) Block

This block monitors the ID pin for accessory attach and detach. After determining which accessory has been attached, the detector block reports this back to the digital core, which sends an interrupt to the baseband. Upon detecting changes in the ID pin voltage, the ADC also writes the ADC value bits in the ADC Register. The baseband processor can then read the I^2C registers and determine the appropriate action. The programmable wait time does not begin until after the baseband acknowledges the interrupt read. Figure 2 outlines the high-level accessory detection flow sequence for Samsung-specific accessories.

Bit Number				Equivalent R _{ID}	Description	
4	3	2	1	0	(ΚΩ)	Description
)	0	0	0	0	GND	USB OTG Mode
)	0	0	0	1	2.000	Audio Send_End Button
)	0	0	1	0	2.604	Audio Remote S1 Button
)	0	0	1	1	3.208	Audio Remote S2 Button
)	0	1	0	0	4.014	Audio Remote S3 Button
)	0	1	0	1	4.820	Audio Remote S4 Button
)	0	1	1	0	6.030	Audio Remote S5 Button
)	0	1	1	1	8.030	Audio Remote S6 Button
)	1	0	0	0	10.030	Audio Remote S7 Button
)	1	0	0	1	12.030	Audio Remote S8 Button
)	1	0	1	0	14.460	Audio Remote S9 Button
C	1	0	1	1	17.260	Audio Remote S10 Button
C	1	1	0	0	20.500	Audio Remote S11 Button
)	1	1	0	1	24.070	Audio Remote S12 Button
)	1	1	1	0	28.700	Reserved Accessory #1
C	1	1	1	1	34.000	Reserved Accessory #2
1	0	0	0	0	40.200	Reserved Accessory #3
1	0	0	0	1	49.900	Reserved Accessory #4
1	0	0	1	0	64.900	Reserved Accessory #5
1	0	0	1	1	80.070	Audio Device Type 2
1	0	1	0	0	102.000	Phone Powered Device
1	0	1	0	1	121.000	TTY Converter
1	0	1	1	0	150.000	UART Cable
1	0	1	1	1	200.000	CEA-936-A Type-1 Charger ⁽⁴⁾
1	1	0	0	0	255.000	Factory Mode Boot OFF-USB
1	1	0	0	1	301.000	Factory Mode Boot ON-USB
1	1	0	1	0	365.000	Audio/Video Cable
1	1	0	1	1	442.000	CEA-936-A Type-2 Charger ⁽⁴⁾
	1	1	0	0	523.000	Factory Mode Boot OFF-UART
	1	1	0	1	619.000	Factory Mode Boot ON-UART
	4	4	4	0	1000.070	Audio Device Type 1 with Remote ⁽⁴⁾
1	1	1	1	U	1002.000	Audio Device Type 1 / Only Send-End ⁽⁵⁾

 Chargers must provide a valid V_{BUS} for the FSA9480 to report them to the phone baseband.
 Audio devices with remote and audio device / only send end are reported as audio in the Device Type 1 Register. The FSA9480 auto-configures in Audio Mode, as described in Table 3.

Switch MUX Block

The switch MUX block contains an I^2C controlled DP4T multiplexer with dedicated paths for high-speed USB, audio R/L, TV R/L, and UART signaling. A summary of

the switch auto configuration connections for the various states is shown in Table 3.

Configurati	ion Type	V _{BUS}	DP	DM	ID	воот	JIG	CHG_DET (I _{SET})
Audio Type 1		MIC	Audio_R	Audio_L	Key Press Monitor	LOW	Hi-Z	Hi-Z
Audio Type 2		Chg FET Closed	RxD	TxD	(7)	LOW	Hi-Z	Hi-Z
TTY		MIC	Audio_R		(7)	LOW	Hi-Z	Hi-Z
UART		(6)	RxD	TxD	(7)	LOW	Hi-Z	Hi-Z
USB		Chg FET Closed	DP_Host	DM_Host	IDBP	LOW	Hi-Z	Hi-Z
USB Charger		Chg FET Closed	DP_Host	DM_Host	IDBP	LOW	Hi-Z	Low
A/V Cable		(6)	V_Audio_R	V_Audio_L	Video	LOW	Hi-Z	Hi-Z ⁽⁸⁾
Dedicated Char Type I & II Char		Chg FET Closed	Open	Open	NA	LOW	Hi-Z	Low
Phone Power (PPE		Chg FET Closed	Audio_R	Audio_L	(7)	LOW	Hi-Z	Hi-Z
Factory Mode	Boot_On	Chg FET Open	RxD	TxD	(7)	HIGH	LOW	Hi-Z
Jig: UÁRT	Boot_Off	Chg FET Open	RxD	TxD	(7)	LOW	LOW	Hi-Z
Factory Mode	Boot_On	Chg FET closed	DP_Host	DM_Host	(7)	HIGH	LOW	Hi-Z
Jig: UŠB	Boot_Off	Chg FET closed	DP_Host	DM_Host	(7)	LOW	LOW	Hi-Z

 Table 3.
 Accessory Auto Configuration Table

Notes:

6. If V_{BUS} is valid, the charger FET is closed; otherwise, the charger FET is open.

7. ID is monitored by ADC for change of state.

8. Unless V_{BUS} is valid, in which case, a charger adapter has been added and CHG_DET is enabled.

Mode Descriptions

Initialization

On initial power up, all register bits are initialized to their default condition, as defined in the I²C register map. During initialization, all switch paths are open. Immediately after initializing, all registers transition to Standby/IDLE Mode.

V_{DDIO} Reset Mode

While in active mode, the FSA9480 is reset by the falling edge of the V_{DDIO} signal pin as the V_{DDIO} level transitions from HIGH to LOW. In this case, the FSA9480 automatically resets to its initialization state. All register bits are initialized to their default condition, as defined in the I^2C register map. Immediately following V_{DDIO} reset all switch paths are open and the FSA9480 transitions to Standby/IDLE Mode. The FSA9480 enters Standby/Idle Mode after the initial reset, while the V_{DDIO} pin remains LOW. Immediately after the V_{DDIO} level returns to a High and the Interrupt Mask is cleared the FSA9480 reports any activity detected while in Standby/Idle Mode.

I²C Reset Mode

The FSA9480 can also be reset by driving both the SDA and SCL signal lines LOW for 30ms. In this case, the FSA9480 automatically resets all registers to default condition, as defined in the I^2C register map. Immediately following I^2C reset, all switch paths are open and FSA9480 transitions to Standby/IDLE mode. See Figure 5 for detailed timing for I^2C Reset Mode.

Standby / IDLE

In this state, no accessory is attached. This state is connected to all other states. During this state, the device is in a power-down mode with a minimal set of functions running. The ID detector continuously monitors the ID pin for accessory attach. Upon accessory attach, the FSA9480 transitions to the appropriate mode based on the accessory.

Charger Mode

When any of the possible charger types are attached, the FSA9480 closes the FET switch and CHG_DET (I_{SET}) is asserted LOW. When CHG_DET is asserted LOW this signals the phones charger IC to enable high-current mode. When CHG_DET is Hi-Z, the charger IC defaults to low-current charge mode.

USB 2.0 and USB OTG Modes

When USB2.0 cable is attached, the FSA9480 configures the switch MUX block according to Table 3. The charger FET is closed.

Dead Battery / No Battery Mode

When no battery or a dead battery is present, the FSA9480 disables the following pins to Hi-Z: INTB, I^2C_SDA , I^2C_SCL , Jig, Boot, R_{XD}, T_{XD}, and CHG_DET.

CEA-936-A Car Kit

Upon initial detection of a CEA-936-A car kit accessory, the FSA9480 detects and reports a car kit accessory attachment. The FSA9480 then initiates the car kit signaling protocol, as described in the CEA-936-A specification. Accordingly, the FSA9480 initializes in UART mode, as described section 7.2.2 of the CEA-936-A specification. The FSA9480 implements the fourwire protocol required for state transitions within the CEA-936-A specification. The baseband processor directs the FSA9480, using the mode bits in the Car Kit Register, to signal the FSA9480 to change modes within the car kit protocol. The phone generates the USB, UART, and audio signals and the FSA9480 multiplexes the appropriate signal out to the attached car kit device. The FSA9480 performs all handshaking necessary with the attached car kit accessory and automatically configures the switch MUX based on the mode setting called for by the baseband processor. Car Kit Audio Mode requires a 1.2V bias applied to the audio signal. The FSA9480 contains a special audio path that provides a 1.2V bias to the Audio_R and Audio L channels when in Car Kit Audio Mode. To achieve the proper bias, the FSA9480 incorporates a separate car kit audio path, containing two unity gain amplifiers. The FSA9480 also uses these audio amplifiers to implement the Car Kit Data During Audio (DDA) Mode. While in DDA mode, the phone must limit the audio signal being driven through the FSA9480 to amplitude no greater than 1V, peak to peak.

Phone Powered Device Mode (PPD)

In Phone Power Device (PPD) Mode, the cell phone provides power to the attached accessory through the charger FET. In this mode, the charger FET is not closed until after the wait time has expired; at which time, the phone should have already biased its output voltage level on the V_{BUS} pin. The phone should never source more than 10mA through the FSA9480 charger FET while in PPD mode. When in PPD mode, the charger FET provides a current path out of the phone to the PPD. There is no inrush current limiting or OCP protection provided by the charger FET when the FSA9480 is in PPD Mode.

Audio Modes

When any of the compatible headsets are attached, the FSA9480 configures as described in Table 3. The FSA9480 is compatible with Samsung headphones that include a remote-control feature. When in Audio Mode, the FSA9480 continuously monitors for remote-control button presses and reports any presses back to the baseband. Figure 15 illustrates the headset with remote basic circuit; Table 4 provides resistor values.

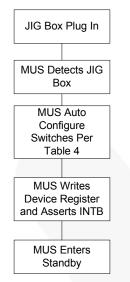
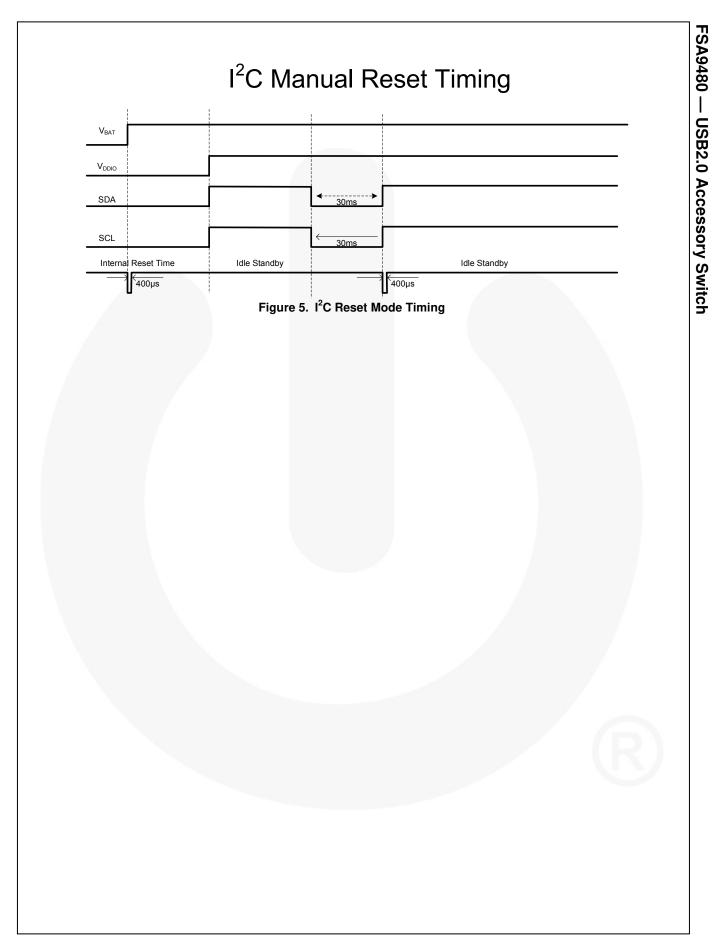
Audio Device Type-1 accessories are passive devices with only one switch configuration per device. They may or may not include a remote controller.

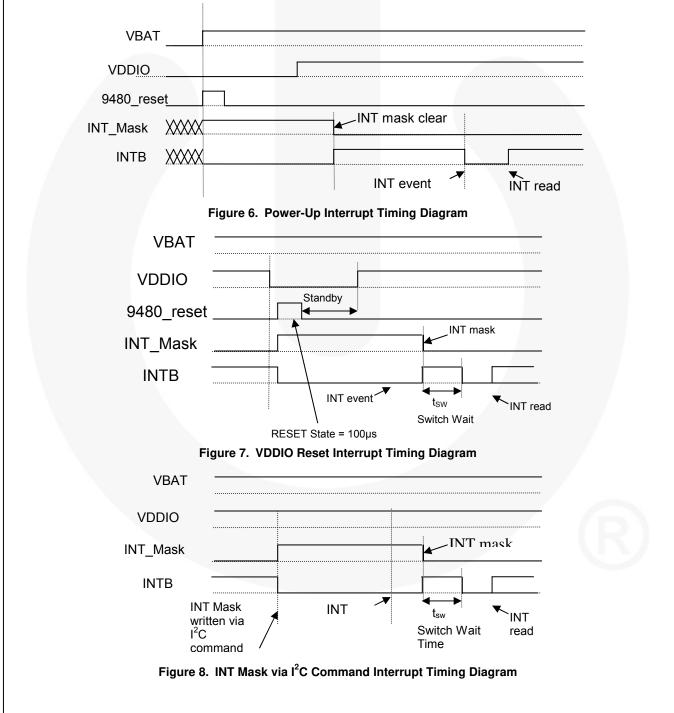
FSA9480 — USB2.0 Accessory Switch

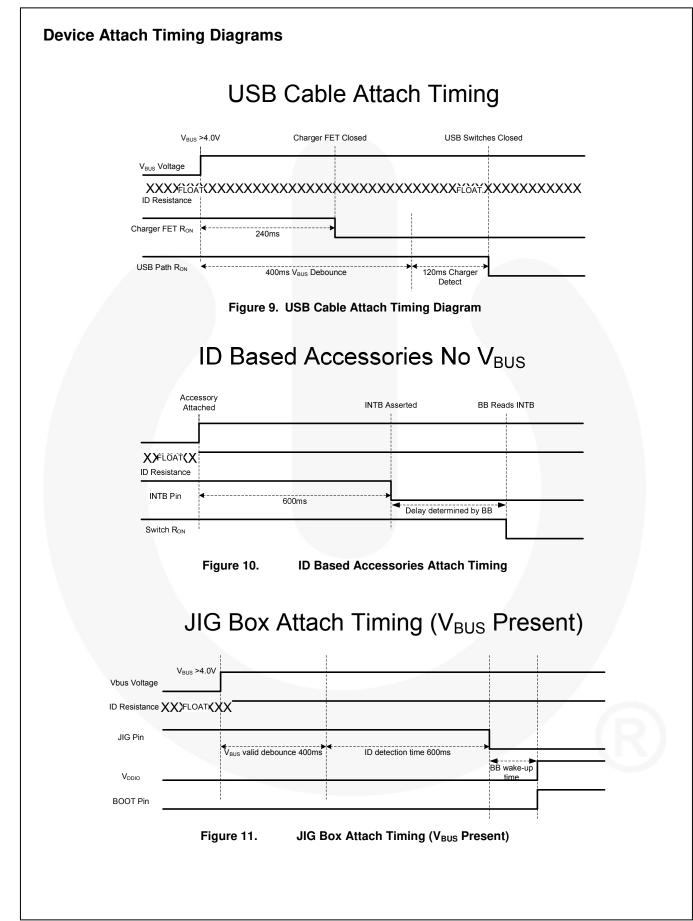
Audio Device Type-2 devices include a built-in UART controller and the FSA9480 auto configures with UART switch paths connected, as described in Table 3. These devices include a remote controller. After initial configuration in UART Mode, the baseband may change the FSA9480 switch mode configuration by writing any of the following bit patterns in the Car Kit Status Register mode bits: 000, 001, 100, 101. While an audio type-2 accessory is attached, it is possible for the baseband to signal changes in switch configuration from any mode to any mode until device detach is detected. While in DDA Mono (100) mode, the FSA9480 DDA circuitry is activated, allowing data to be sent and received during audio transmission between the resident UART transceivers in the phone and the audio type-2 device. The FSA9480 DDA audio scheme follows that of the CEA-936-A specification as implemented in the car kit mode of the FSA9480. Other than implementing the DDA transmission and reception scheme in CEA-936-A, the FSA9480 does not implement any car kit protocols or state machines while in Audio Device Type-2 Mode. In DDA Mode, the phone must limit the audio signal driven through the FSA9480 to amplitude no greater than 1V, peak to peak.

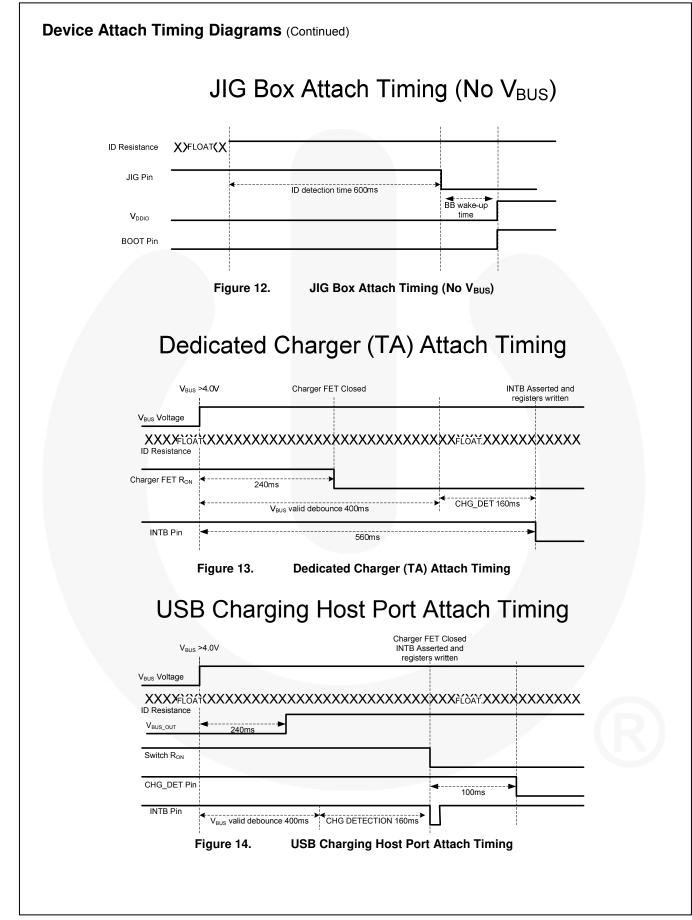
Factory Modes

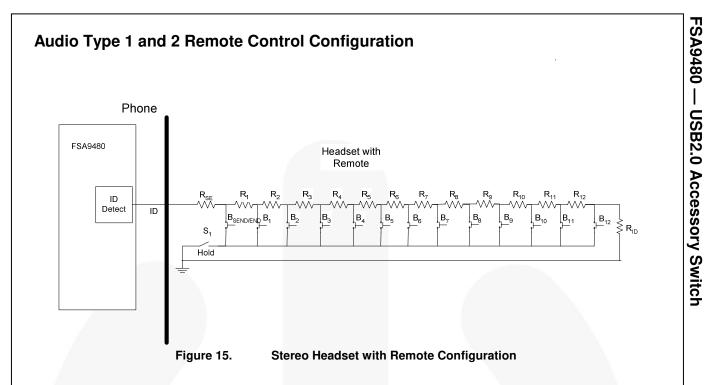
Factory Modes are initiated with the attachment of a Samsung proprietary JIG Box and are used for phone assembly and testing. The Factory Mode attach procedure is slightly different from the standard accessory attach flow. The primary difference is that the FSA9480 automatically configures the switch paths as soon as a Factory Mode accessory is attached and V_{DDIO} is present. This is unique in that the FSA9480 does not wait for an I^2 C read acknowledge from the baseband and does not employ the switch wait timer. A second difference is that, in this mode, the JIG pin is driven LOW even if the VDDIO pin is LOW. Figure 4 provides the attach flow for the JIG Box accessory.

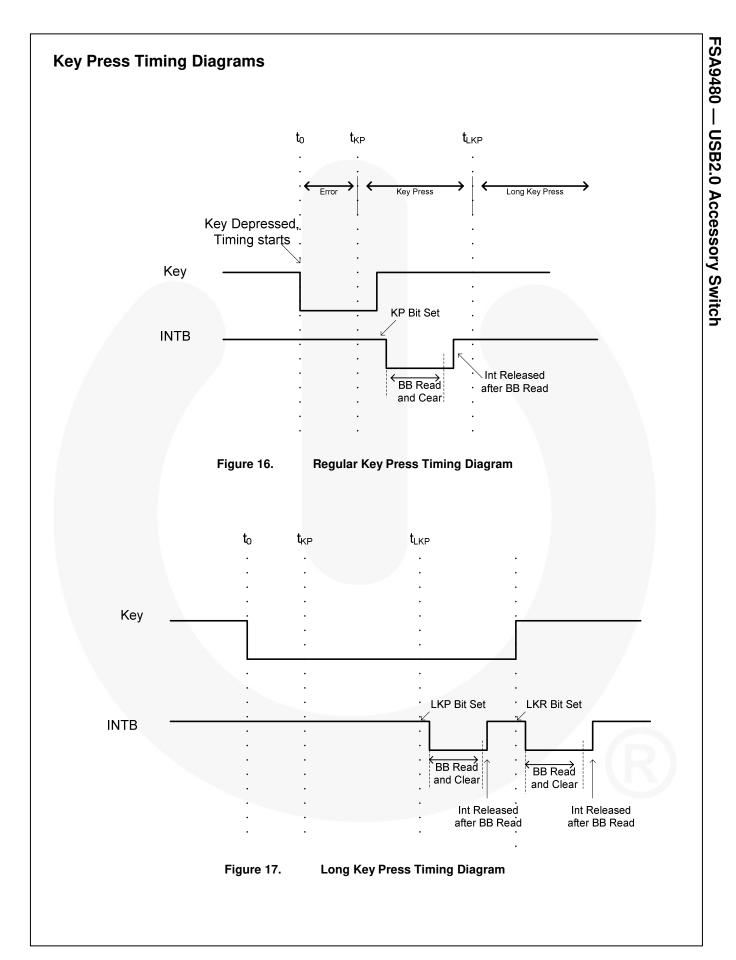

Figure 4. JIG Box Detection Flow




Interrupt Operation Description


The FSA9480 follows the Interrupt guidelines as described in the Samsung Interrupt Definition and Default Path specification Rev 0.1 released July 15 2008. The baseband processor recognizes interrupt signals by observing the falling edge of the INTB signal in a high-to-low transition. During the phone power-up sequence, V_{DDIO} reset or I²C reset the INTB pin is masked on initialization and defaults LOW. After the INTB mask is cleared by the baseband processor, the INTB pin is HIGH in preparation of a future interrupt. If the interrupt mask bit in the I²C Control Register is

written HIGH when the system is already powered up, the INTB remains HIGH until the INTB mask is cleared. If an interruptible event occurs while the INTB pin is masked, the FSA9480 changes the appropriate register value and waits until the INTB mask bit is cleared, plus the switch wait time before signaling an interrupt to the baseband. Figure 6 illustrates the interrupt timing for the FSA9480 during initial power up. Figure 7 shows the INTB behavior during a V_{DDIO} reset. Figure 8 illustrates the INTB timing when the INT Mask bit is written by the baseband using I^2C commands.



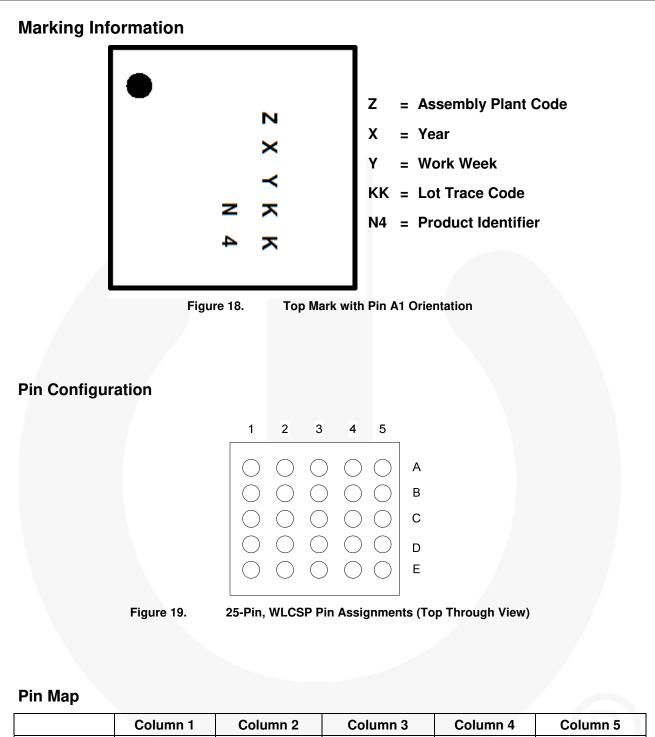


Table 4.	Remote Control	Besistor Table	(1% Resistor	Values)
			(1/0110313101	l'uluco)

Switch and Resistor Number	Resistor Value	Resistor Number	Resistor Value					
RSE	2ΚΩ	B7, R7	2ΚΩ					
B1, R1	0.604ΚΩ	B8, R8	2ΚΩ					
B2, R2	0.604KΩ	B9, R9	2.43ΚΩ					
B3, R3	0.806ΚΩ	B10, R10	2.8ΚΩ					
B4, R4	0.806KΩ	B11, R11	3.24ΚΩ					
B5, R5	1.21ΚΩ	B12, R12	3.57ΚΩ					
B6, R6	260	RID	976KΩ (Audio Type 1)					
00, R0	2ΚΩ	RID	56KΩ (Audio Type 2)					

	Column 1	Column 2	Column 3	Column 4	Column 5
Row A	INTB	VDDIO	CHG_DET	VBUS_OUT	VBUS_IN
Row B	DP_Host	I ² C_SDA	Audio_L	MIC	DM_CON
Row C	DM_Host	I ² C_SCL	V_Audio_L	Audio_R	DP_CON
Row D	VBAT	ID_Bypass	V_Audio_R	Video	ID_CON
Row E	RxD	TxD	BOOT	JIG	GND

Name	Pin #	Туре	Default State	Description
USB Interfac	e			
DP_Host	B1	Signal Path	Open	D+ signal, dedicated USB port to be connected to the resident USB transceiver on the phone
DM_Host	C1	Signal Path	Open	D- signal, dedicated USB port to be connected to the resident USB transceiver on the phone
ID_Bypass	D2	Signal Path	Open	USB ID pin bypass allows the FSA9480 to pass the ID signal pin through to the resident phone USB controller when a USB accessory is attached
Audio Interfa	ace			
Audio_L	В3	Signal Path	Open	Left audio channel from phone audio-out codec
Audio_R	C4	Signal Path	Open	Right audio channel from phone audio-out codec
MIC	B4	Signal Path	Open	Connected to the phone audio codec MIC input pin
Video Interfa	ace			
Video	D4	Signal Path	Open	Input signal driven by the phone DMB video-out signal
V_Audio_L	C3	Signal Path	Open	Left audio channel from TV audio out
V_Audio_R	D3	Signal Path	Open	Right audio channel from TV audio out
UART Interfa	ace			
TxD	E2	Signal Path	Open	Tx connection from resident UART transceiver on the phone
RxD	E1	Signal Path	Open	Rx connection from resident UART transceiver on the phone
Factory Inter	rface			
Jig	E4	Open- Drain Output	Hi-Z	Output control signal driven by the FSA9480; used by the processor for Samsung factory test modes
Boot	E3	Push- Pull Output	LOW	Output control signal driven by the FSA9480, used by the processor for Samsung factory test modes
Power Interf	ace			
V _{BAT}	D1	Power	N/A	Input voltage supply pin to be connected to the phone battery output
V _{BUS_OUT}	A4	Power	N/A	Output voltage supply pin to be connected to the source voltage pin on the charger IC
V _{DDIO}	A2	Power	N/A	Input baseband interface I/O supply pin
CHG_DET (I _{SET})	A3	Open- Drain Output	Hi-Z	Open-drain I/O pin, active LOW, used to signal charger IC that a charge has been attached

nued)	
Default State	Description
N/A	Input voltage supply pin; connect to the V_{BUS} pin of the USB connector
N/A	Ground
Open	Connected to the USB connector ID pin; depending on the FSA9480 state, this pin can share ID or video signals
Open	Connected to the USB connector D+ pin; depending on the FSA9480 signaling mode, this pin can share D+, S_R, V_R, Rxd, or MIC signals
Open	Connected to the USB connector D- pin; depending on the FSA9480 signaling mode, this pin can share D-, S_L, Txd, or V_L signals
N/A	I ² C serial clock signal to be connected to the phone based I ² C master
Hi-Z	Open-drain I/O pin; I ² C serial data signal to be connected to the phone based I ² C master
Low	Interrupt signal to prompt the phone baseband to read the I ² C register bits, indicates a change in ID pin status or accessory attach status

Pin Descriptions (Continued

Pin #

A5

E5

D5

C5

B5

C2

B2

A1

Туре

Power

Power

Signal

Path Signal

Path Signal

Path

Input

Open-

Drain

I/O Push-

Pull

Output

Name

 V_{BUS_IN}

GND

ID_CON

DP_CON

DM_CON

I²C Interface

I²C_SDA

INTB

Connector Interface

FSA9480 — USB2.0 Accessory Switch

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Param	Min.	Max.	Unit			
V _{BAT} /V _{DDIO}	Supply Voltage from Battery / Baseba	-0.5	6.0	V			
V _{BUS}	Supply Voltage from Mini–USB Conn	ector		-0.5	28.0	V	
		USB or Car Kit Path A	ctive	-1.0	V _{BUS} +0.5		
V_{SW}	Switch I/O Voltage	Stereo/Mono Audio Pa	ath Active	-1.5	V _{BAT} +0.5	V	
		All Other Channels		-0.5	V _{BAT} +0.5		
I _{IK}	Input Clamp Diode Current			-50		mA	
Chg_Det	Charger Detect Sets Current Sink Capability of the Charger IC				30	mA	
I _{sw}		USB			50		
	Switch I/O Current (Continuous)	Audio			60	mA	
		All Other Channels		50			
		USB			150	mA	
	Peak Switch Current (Pulsed at 1ms Duration, <10% Duty Cycle)	Audio			150	mA	
SWPEAK		Charger FET			1.2	А	
		All Other Channels		150	mA		
T _{STG}	Storage Temperature Range			-65	+150	°C	
TJ	Maximum Junction Temperature				+150	°C	
TL	Lead Temperature (Soldering, 10 Sec	conds)			+260	°C	
	IEC 61000-4-2 System	USB Connector Pins	Air Gap	15			
ESD	Electrostatic Discharge	(D+, D-, V _{BUS} , ID)	Contact	8		kV	
	JEDEC JESD22-A114, Human Body	Model	All Pins	4			

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter			Max.	Units
V_{BAT}	Battery Supply Voltage		3.0	4.4	V
V_{BAT_TH}	Battery Supply Voltage Threshold			3.0	V
V _{BUS}	Supply Voltage		4.00	5.25	V
V _{DDIO}	Baseband-supplied Reference Voltage			3.6	V
	US	SB Path Active	0	3.6	V
V _{SW}	Switch I/O Voltage Au	udio Path Active	-0.8	0.8	V
	All	Other Pins	0	5.0	V
ID_{Cap}	Maximum Capacitive Load on ID pin for Reliable Accessory Detection			1.5	nF
T _A	Operating Temperature		-40	+85	°C

FSA9480 — USB2.0 Accessory Switch

Switch Path DC Electrical Characteristics

All typical values are at 25°C unless otherwise specified.

Symbol	Parameter	V ()/)	Conditions	T _A =	Unit		
Symbol	Parameter	V _{BAT} (V)	Conditions	Min.	Тур.	Max.	
UART Int	erface Pins						
V _{OHRXD}	R _{xD} Output High Voltage	3.0 to 4.4	I _{OH} =2mA	0.7 • V _{DDIO}			V
VOLRXD	R _{XD} Output Low Voltage	3.0 to 4.4	I _{OL} =10mA			0.4	V
VIHDPCon	UART Input (DP_Con) High Voltage	3.0 to 4.4		0.7 • V _{DDIO}			V
VILDPCon	UART Path (DP_Con) Input Low Voltage	3.0 to 4.4				0.4	V
VOHDMCon	UART Output (DM_Con) High Voltage	3.0 to 4.4	I _{OH} =2mA	0.7 • V _{BAT}			V
VOLDMCon	UART Output (DM_Con) Low Voltage	3.0 to 4.4	I _{OL} =10mA			0.4	V
VIHTXD	T _{XD} Input High Voltage	3.0 to 4.4		0.7 • V _{DDIO}			V
VILTXD	T _{XD} Input Low Voltage	3.0 to 4.4				0.4	V
Host Inte	rface Pins (JIG, BOOT, INTB, CH	G-DET)					
Vон	Output High Voltage ⁽⁹⁾	3.0 to 4.4	I _{OH} =2mA	0.7 • V _{DDIO}			v
Vol	Output Low Voltage	3.0 to 4.4	I _{OL} =10mA			0.4	V
Switch O	ff Characteristics						
I _{OFF}	Power Off Leakage Current	0	All Data Ports Except Video, ID Bypass and MIC V _{SW} =0V to 4.4V			18	μA
I _{NO(0FF)}	Off-Leakage Current	3.0 to 4.4	I/O pins=0.3V, V _{BAT} , or Floating	-100	1	100	nA
USB Swit	tch On Path						1
USB Anal	og Signal Range	3.0 to 4.4		0		3.6	V
RONUSB	HS Switch On Resistance ^(10,13)	3.0 to 4.4	V _{D+/D-} =0V, 0.4V, I _{ON} =8mA		6	8	Ω
Charging	FET On Path				1		•
VOVP	OVP Threshold Voltage ⁽¹³⁾	3.8		6.2	6.6	7.0	V
RONFET	Charging FET On Resistance ⁽¹⁰⁾		V _{BUS} =4.2V to 5.0V, I _{ON} =1A		100		mΩ
I _{OCP}	OCP Threshold Current ⁽¹³⁾			1.1	1.5	1.6	Α
I _{RUSH}	Charging FET Inrush Current Limiting ⁽¹³⁾		C _L =4.7µF Typical, C _L =10µF Maximum, Duration = 100ms after Initial Attach			100	mA
Audio R/I	L Switch On Paths						
DC Audio	Analog Signal Range	3.0 to 4.4		0		3	V
AC Audio	Analog Signal Range	3.0 to 4.4		-1.5		3.0	V
R _{ON}	Audio Switch On Resistance ^(10,13)	3.8	V _{L/R} =-0.8V, 0.8V, I _{ON} =30mA, f=0-470kHz		2.0	3.0	Ω
R _{FLAT}	Audio R _{ON} Flatness ⁽¹¹⁾	3.8			0.1		Ω

O make a l	Demonstern	V 00	O an dition a	T _A =	-40 to +	.85°C	Unit
Symbol	Parameter	V _{BAT} (V)	Conditions	Min.	Тур.	Max.	Unit
Video Au	dio R/L Switch On Paths		·				
DC Audio	Analog Signal Range ⁽¹⁴⁾	3.0 to 4.4		0		3	V
AC Audio	Analog Signal Range ⁽¹⁴⁾	3.0 to 4.4		-1.5		3.0	V
R _{ON}	R _{ON} Audio Switch On Resistance ^(10,13)		V _{L/R} =0V, 1.6V,		2.8	5.0	Ω
R _{FLAT}	Audio R _{ON} Flatness ^(11,13)	3.0 to 4.4	I _{ON} =30mA, f=0-470kHz		0.2	0.4	Ω
MIC Switch On Path							
Analog Signal Range ⁽¹²⁾		3.0 to 4.4		0		4.4	V
R _{ON}	Switch On Resistance ⁽¹⁰⁾	3.0 to 4.4	V _{SW} =1.4 to 1.8V, I _{ON} =30mA	25	40	52	Ω
IDBP and	I Video Switch On Paths						
Analog Si	gnal Range	3.0 to 4.4		0		4.4	V
R _{ON}	Switch On Resistance ^(10,13)	3.0 to 4.4	V _{SW} =0V, 4.4V, I _{ON} =30mA	10	15	20	Ω
Total Sw	itch Current Consumption						
I _{CCSLNA}	Battery Supply Sleep Mode Current No Accessory Attached	3.8	Static Current During Sleep Mode		9	15	μA
Iccslwa	Battery Supply Sleep Mode Current with Accessory Attached ⁽¹³⁾	3.8	Static Current During Sleep Mode		30	40	μA
Іссик	Battery Supply Active Mode Current ⁽¹³⁾	3.8	Average Pulse Current (~100µs Pulse)		2.5	3	mA

Notes:

9. Does not apply to CHG_DET or JIG pins.

10. On resistance is determined by the voltage drop between the A and B pins at the indicated current through the switch.

11. Flatness is defined as the difference between the maximum and minimum values of on resistance over the specified range of conditions.

12. The MIC bias applied by the phone should not exceed 3.5V.

13. Guaranteed by characterization data.

14. Negative swing audio is not recommended when the switch is open.

Capacitance

Symbol	Parameter		Conditions	T _A =-	Unit		
Symbol Parameter		V _{BAT} (V)	Conditions	Min.	Тур.	Max.	Unit
C_{INOFF}	Host Interface Pins Off Capacitance	3.8	V _{BIAS} =0V		10		pF
C _{ON(D+, D-)}	D+, D- On Capacitance (USB Mode)	3.8	V _{BIAS} =0.2V, f=1MHz		8		pF

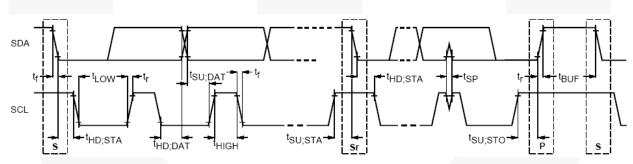
I²C[™] Controller DC Characteristics

Symbol	Peremeter		Fast M	ode (400k	(Hz)
Symbol	Parameter	Min.	Max.	Unit	
VIL	Low-Level Input Voltage		-0.5	0.3V _{DDIO}	V
V _{IH}	High-Level Input Voltage		$0.7V_{DDIO}$		V
V	Low-Level Output Voltage at 3mA Sink Current	V _{DDIO} >2V	0	0.4	v
V _{OL1}	(Open-Drain or Open-Collector)	V _{DDIO} <2V		0.2V _{DDIO}	v
li -	Input Current of Each I/O Pin, Input Voltage 0.26V to 2.	.34V	-10	10	μA
Cı	Capacitance for Each I/O Pin			10	pF

Switch Path AC Electrical Characteristics

All typical value are for V_{BAT} =3.8V at 25°C unless otherwise specified.

Symbol	Dexemptor	Parameter		V _{BAT} (V) Conditions		T _A = -40 to +85°C		
Symbol	Parameter		V _{BAT} (V)	Conditions	Min.	Тур.	Max.	Unit
Xtalk	Non-Adjacent Channel	Audio Mode	3.8	f=20kHz, R⊤=32Ω, C _L =0pF		-50		dB
Aldik	Crosstalk	USB Mode	3.8	f=1MHz, R _T =50Ω, C _L =0pF		-60		uБ
	Official	Audio Mode	3.8	f=20kHz, R⊤=32Ω, C _L =0pF		-100		dB
UIRR	O _{IRR} Off Isolation		3.8	f=1 MHz, R _T =50Ω, C _L =0pF		-60		uБ
PSRR	Power Supply Rejection Ra	3.8	Power Supply Noise 300mV _{PP} , f=217Hz on MIC, DP_Con, DM_Con		-100		dB	
t _{SK(P)}	Skew of Opposite Transition Same Output (USB Mode)	3.8	t _r =t _f =750ps (10-90%) at 240MHz, C∟=0pF, R _L =50Ω		35	F	ps	
tj	Total Jitter (USB Mode)	3.8	R_L =50Ω, C _L =50pF, t _r =t _f =500ps (10-90%) at 480Mbps (PRBS=2 ¹⁵ -1)		130		ps	


I²C[™] AC Electrical Characteristics

Sumhel	Doromotor	Fast Mode				
Symbol	Parameter	Min.	Max.	Unit		
f _{SCL}	SCL Clock Frequency	0	400	kHz		
t _{HD;STA}	Hold Time (Repeated) START Condition	0.6		μs		
t _{LOW}	Low Period of SCL Clock	1.3		μs		
t _{HIGH}	High Period of SCL Clock	0.6		μs		
t _{su;sta}	Set-up Time for Repeated START Condition	0.6		μs		
t _{HD;DAT}	Data Hold Time	0	0.9	μs		
t _{SU;DAT}	Data Set-Up Time	100 ⁽¹⁵⁾		ns		
tr	Rise Time of SDA and SCL Signals ⁽¹⁶⁾	20+0.1Cb	300	ns		
t _f	Fall Time of SDA and SCL Signals ⁽¹⁶⁾	20+0.1Cb	300	ns		
t _{su;sто}	Set-up Time for STOP Condition	0.6		μs		
t _{BUF}	Bus Free Time between a STOP and START Conditions	1.3		μs		
t _{SP}	Pulse Width of Spikes that Must Be Suppressed by the Input Filter	0	50	ns		

Note:

15. A fast-mode I²C-bus device can be used in a Standard-mode I²C-bus system, but the requirement t_{su,DAT} ≥ 250ns must be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If the device stretches the LOW period of the SCL signal, it must output the next data bit to the SDA line t_{r max} + t_{su,DAT}=1000+250=1250ns (according to the standard-mode I²C-bus specification) before the SCL line is released.

C_b equals the total capacitance of one bus line in pf. If mixed with high-speed mode devices, faster fall times are allowed according to the I²C specification.

Definition of Timing for Full-Speed Mode Devices on the I²C-bus

Nam	e	Size (E	Bits)								
Slave Ad	draga	8		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Slave Au	uless	0		0	1	0	0	1	0	1	R/W
Table 6.	l²C™ Re	gister	Мар								
Address	Register	Туре	Reset Value	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
01H	Device ID	R	N/A			Version ID				Vendor ID	
02H	Control	R/W	XXX11111	Reserved	Reserved	Reserved	Switch Open	RAW Data	Manual S/W	Wait	INT Mask
03H	Interrupt 1 ⁽¹⁷⁾	R	00000000	OVP_OCP _DIS	OCP_EN	OVP_EN	LKR	LKP	KP	Detach	Attach
04H	Interrupt 2 ⁽¹⁷⁾	R	XXX00000	Reserved	Reserved	Reserved	Stuck Key RCV	Stuck Key	ADC Change	Reserved Attach	A/V Charging
05H	Interrupt Mask 1	R/W	00000000	OVP_OCP _DIS	OCP_EN	OVP_EN	LKR	LKP	KP	Detach	Attach
06H	Interrupt Mask 2	R/W	XXX00000	Reserved	Reserved	Reserved	Stuck Key RCV	Stuck Key	ADC Change	Reserved Attach	A/V Charging
07H	ADC	R	XXX11111	Reserved	Reserved	Reserved		ADC Value			
08H	Timing Set 1	R/W	00000100		Keyl	Press			Device V	Vake Up	
09H	Timing Set 2	R/W	00000000		Switchi	ng Wait	1		Long Ke	ey Press	
0AH	Device Type 1	R	00000000	USB OTG	Dedicated CHG	USB Charger	Car kit	UART	USB	Audio Type 2	Audio Type 1
0BH	Device Type 2	R	X0000000	Reserved	A/V	TTY	PPD	Jig UART Off	Jig UART On	Jig USB Off	Jig USB On
0CH	Button 1	R	00000000	7	6	5	4	3	2	1	Send End
0DH	Button 2	R	X0000000	Reserved	Unknown	Error	12	11	10	9	8
0EH	Car Kit Status	R/W ⁽¹⁸⁾	X0000100	Reserved	DISC_Req uest	UART Traffic		Mode		Ту	rpe
0FH	Car Kit Int 1	R	00000000	CR_UART	PH_Disc	PH_DDA_ Stereo	PH_DDA_ Mono	PH_Aud_ Stereo	PH_Aud_M ono	PH_UART	PH_Init
10H	Car Kit Int 2	R	XXXXX000	Reserved	Reserved	Reserved	Reserved	Reserved	CR_DDA_ Stereo	CR_Stereo	CR_Mono
11H	Car Kit Int Mask 1	R/W	00000000	CR_UART	PH_Disc	PH_DDA_ Stereo	PH_DDA_ Mono	PH_Aud_ Stereo	PH_Aud_M ono	PH_UART	PH_Init
12H	Car Kit Int Mask 2	R/W	XXXXX000	Reserved	Reserved	Reserved	Reserved	Reserved	CR_DDA_ Stereo	CR_Stereo	CR_Mono
13H	Manual SW 1	R/W	00000000		D- Switching	1		D+ Switching	1	V _{BUS} sv	vitching
14H	Manual SW 2	R/W	XXX00000	Reserved	Reserved	Reserved	Reserved	BOOT SW	JIG ON	ID Sw	itching

Notes:

17. The following four bit pairs are mutually exclusive; OVP_EN/OVP_DIS, Stuck_Key/Stuck_Key_Rcv, LKP/LKR, Detach/Attach. If the FSA9480 writes either bit in these pairs before its counterpart has been read and cleared, the FSA9480 clears the first bit before writing the second bit in the mutually exclusive pair. This ensures only one bit from each pair is ever HIGH.

18. Bits 0 and 1 of the Car Kit Status Register 0EH cannot be written.

Table 7. Device ID

- Address: 01h
- Type: Read

Bit #	Name	Size (Bits)	Description
7:3	Version ID	5	Rev1.0, Rev 1.1 : 000000
			Rev2.0: 00001
			Rev2.1: 00010
			Rev3.0: 00011
			Rev3.1: 00100
			Rev3.2: 00101
2:0	Vendor ID	3	000: Fairchild Semiconductor
-			

Table 8. Control

- Address: 02h
- Reset Value: xxx11111
- Type: Read/Write

Bit #	Name	Size (Bits)	Description	
7:5	Reserved	3	NA	
1	4 Switch Open		1	0: Open all switches
4		I	1: Automatic switching by accessory status	
3	RAW Data	1	0: Report the status changes on ID to HOST	
3	RAW Dala	V Dala I	1: Don't report the status changes on ID to HOST	
2	Manual C/M		Manual S/W 1	0: Manual switching mode (refer to attach flow diagram Figure 2)
2	Manual 5/W	I	1: Automatic switching mode (refer to attach flow diagram Figure 2)	
1	\M/oit	1	0: Keep all switches open until this bit is reset to 1 by the baseband; when reset to 1, immediately configure the switches	
I	1 Wait	1	 Wait for the duration of wait time specified in Timing Set Register before configuring switches 	
0	0 INT Mask	1	0: Unmask interrupt – interrupt baseband on change of state in either Interrupt Register	
			1: Mask interrupt – do not interrupt baseband	

Table 9. Interrupt 1

- Address: 03h
- Reset Value: 00000000
- Type: Read/Clear

Bit #	Name	Size (Bits)	Description	
7	OVP_OCP_DIS	1	1: OVP and OCP disabled	
6	OCP_EN	1	1: OCP enabled	
5	OVP_EN	1	1: OVP enabled	
4	LKR	1	1: Long key release	
3	LKP	1	1: Long key press	
2	KP	1	1: Key press	
1	Detach	1	1: Accessory detached	
0	Attach	1	1: Accessory attached	

Table 10. Interrupt 2

- Address: 04h
- Reset Value: xxx00000

Type: Read/Clear

Bit #	Name	Size (Bits)	Description
7:5	Reserved	3	NA
4	Stuck_Key_RCV	1	1: Stuck key is recovered
3	Stuck_Key	1	1: Stuck key is detected
2	ADC_Change	1	1: ADC value change (when RAW data is enabled)
1	Reserved_Attach	1	1: Reserved device is attached
0	A/V_Charging	1	1: Charger detected when A/V cable is attached

Table 11. Interrupt Mask 1

- Address: 05h
- Reset Value: 00000000
- Type: Read/Write

Bit #	Name	Size (Bits)	Description	
7	OVP_OCP_DIS	1	1: Mask OVP and OCP disabled interrupt	
6	OCP_EN	1	1: Mask OCP enabled interrupt	
5	OVP_EN	1	1: Mask OVP enabled interrupt	
4	LKR	1	1: Mask long key release interrupt	
3	LKP	1	1: Mask long key press interrupt	
2	KP	1	1: Mask key press interrupt	
1	Detach	1	1: Mask detach interrupt	
0	Attach	1	1: Mask attach interrupt	

Table 12. Interrupt Mask 2

- Address: 06h
- Reset Value: xxx00000
- Type: Read/Write

Bit #	Name	Size (Bits)	Description
7:5	Reserved	3	NA
4	Stuck_Key_RCV	1	1: Mask stuck key recovered interrupt
3	Stuck_Key	1	1: Mask stuck key Interrupt
2	ADC_Change	1	1: Mask ADC value change interrupt
1	Reserved_Attach	1	1: Mask reserved device interrupt
0	A/V_Charging	1	1: Mask charger detect when A/V cable attached interrupt