imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor dates sheds, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheds and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use on similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconduc

FAIRCHILD

SEMICONDUCTOR

FSAM50SM60A Motion SPM[®] 2 Series

Features

- UL Certified No. E209204 (UL1557)
- 600 V 50 A 3-Phase IGBT Inverter with Integral Gate Drivers and Protection
- Low-Loss, Short-Circuit Rated IGBTs
- Very Low Thermal Resistance Using Al₂O₃ DBC Substrate
- Separate Open-Emitter Pins from Low Side IGBTs for Three-Phase Current Sensing
- Single-Grounded Power Supply
- Optimized for 5 kHz Switching Frequency
- Built-in NTC Thermistor for Temperature Monitoring
- Inverter Power Rating of 4.0 kW / 100~253 VAC
- Adjustable Current Protection Level via Selection of Sense-IGBT Emitter's External Rs
- Isolation Rating: 2500 V_{rms} / min.

Applications

Motion Control - Home Appliance / Industrial Motor

Resource

• AN-9043 - Motion SPM® 2 Series User's Guide

January 2014

FSAM50SM60A Motion SPM® 2 Series

General Description

FSAM50SM60A is a Motion SPM® 2 module providing a fully-featured, high-performance inverter stage for AC Induction, BLDC, and PMSM motors. These modules integrate optimized gate drive of the built-in IGBTs to minimize EMI and losses, while also providing multiple on-module protection features including under-voltage lockouts, overcurrent shutdown, thermal monitoring, and fault reporting. The built-in, high-speed HVIC requires only a single supply voltage and translates the incoming logic-level gate inputs to the high-voltage, high-current drive signals required to properly drive the module's internal IGBTs. Separate negative IGBT terminals are available for each phase to support the widest variety of control algorithms.

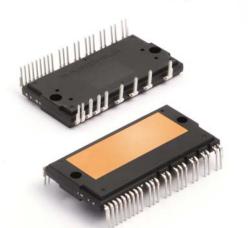
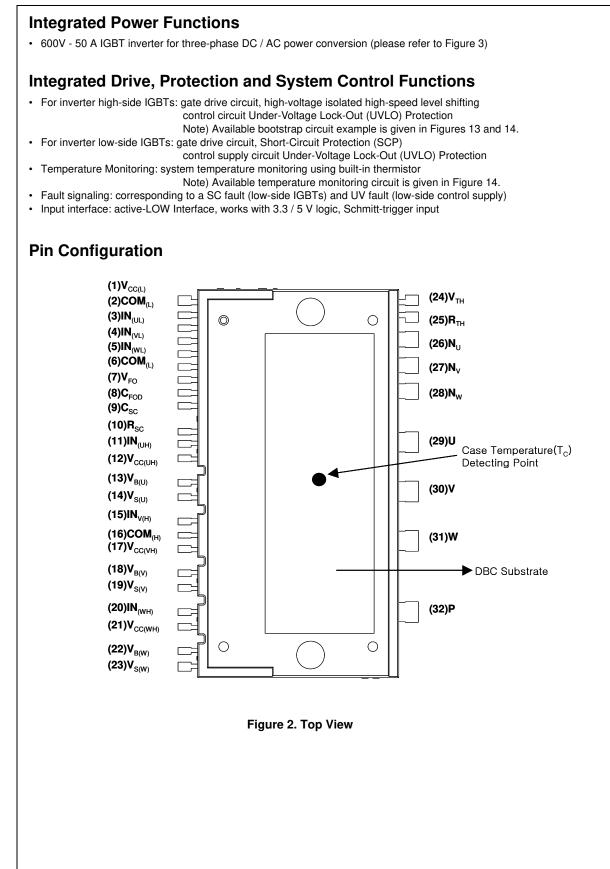
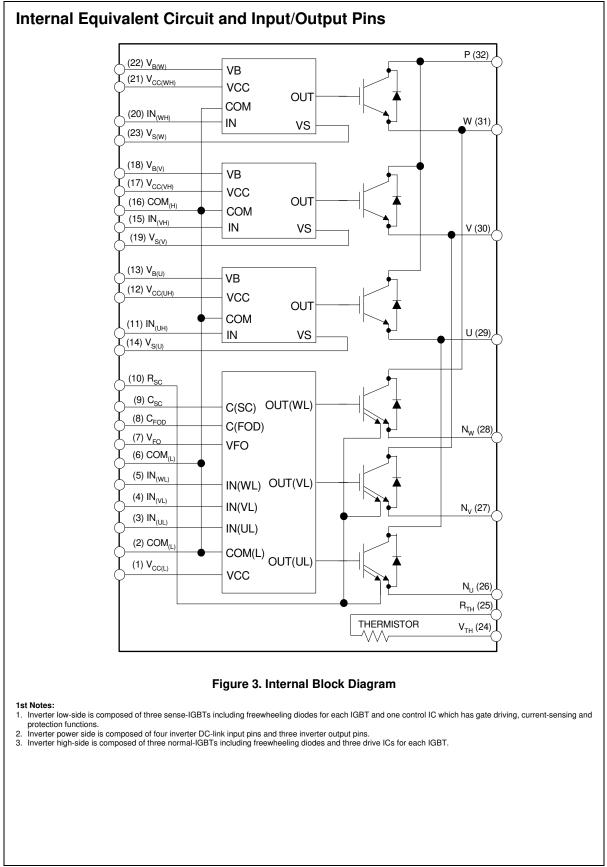



Figure 1. Package Overview

Package Marking and Ordering Information

Device	Device Marking	Package	Packing Type	Quantity
FSAM50SM60A	FSAM50SM60A	S32CA-032	Rail	8


©2006 Fairchild Semiconductor Corporation FSAM50SM60A Rev. C4

©2006 Fairchild Semiconductor Corporation FSAM50SM60A Rev. C4

www.fairchildsemi.com

Pin Number	Pin Name	Pin Description
1	V _{CC(L)}	Low-Side Common Bias Voltage for IC and IGBTs Driving
2	COM _(L)	Low-Side Common Supply Ground
3	IN _(UL)	Signal Input Terminal for Low-Side U-Phase
4	IN _(VL)	Signal Input Terminal for Low-Side V-Phase
5	IN _(WL)	Signal Input Terminal for Low-Side W-Phase
6	COM _(L)	Low-Side Common Supply Ground
7	V _{FO}	Fault Output
8	C _{FOD}	Capacitor for Fault Output Duration Selection
9	C _{SC}	Capacitor (Low-Pass Filter) for Short-Circuit Current Detection Input
10	R _{SC}	Resistor for Short-Circuit Current Detection
11	IN _(UH)	Signal Input for High-Side U-Phase
12	V _{CC(UH)}	High-Side Bias Voltage for U-Phase IC
13	V _{B(U)}	High-Side Bias Voltage for U-Phase IGBT Driving
14	V _{S(U)}	High-SideBias Voltage Ground for U-Phase IGBT Driving
15	IN _(VH)	Signal Input for High-Side V-Phase
16	COM _(H)	High-Side Common Supply Ground
17	V _{CC(VH)}	High-Side Bias Voltage for V-Phase IC
18	V _{B(V)}	High-Side Bias Voltage for V-Phase IGBT Driving
19	V _{S(V)}	High-Side Bias Voltage Ground for V-Phase IGBT Driving
20	IN _(WH)	Signal Input for High-side W-Phase
21	V _{CC(WH)}	High-Side Bias Voltage for W-Phase IC
22	V _{B(W)}	High-Side Bias Voltage for W-Phase IGBT Driving
23	V _{S(W)}	High-Side Bias Voltage Ground for W-Phase IGBT Driving
24	V _{TH}	Thermistor Bias Voltage
25	R _{TH}	Series Resistor for the Use of Thermistor (Temperature Detection)
26	NU	Negative DC-Link Input Terminal for U-Phase
27	N _V	Negative DC-Link Input Terminal for V-Phase
28	NW	Negative DC-Link Input Terminal for W-Phase
29	U	Output for U-Phase
30	V	Output for V-Phase
31	W	Output for W-Phase
32	Р	Positive DC-Link Input

©2006 Fairchild Semiconductor Corporation FSAM50SM60A Rev. C4

Absolute Maximum Ratings ($T_J = 25^{\circ}C$, unless otherwise specified.) **Inverter Part**

Item	Symbol	Condition	Rating	Unit
Supply Voltage	V _{DC}	Applied to DC-Link	450	V
Supply Voltage (Surge)	V _{PN(Surge)}	Applied between P and N	500	V
Collector - Emitter Voltage	V _{CES}		600	V
Each IGBT Collector Current	± I _C	T _C = 25°C	50	Α
Each IGBT Collector Current	± I _C	$T_{\rm C} = 100^{\circ}{\rm C}$	25	Α
Each IGBT Collector Current (Peak)	± I _{CP}	T _C = 25°C , Under 1ms Pulse Width	100	Α
Collector Dissipation	P _C	T _C = 25°C per Chip	100	W
Operating Junction Temperature	Τ _J	(2nd Note 1)	-20 ~ 125	°C

2nd Notes: 1. It would be recommended that the average junction temperature should be limited to $T_J \le 125^{\circ}C$ (at $T_C \le 100^{\circ}C$) in order to guarantee safe operation.

Control Part

Item	Symbol	Condition	Rating	Unit
Control Supply Voltage	V _{CC}	Applied between $V_{CC(UH)}$, $V_{CC(VH)}$, $V_{CC(WH)}$ - $COM_{(H)}$, $V_{CC(L)}$ - $COM_{(L)}$	20	V
High-Side Control Bias Voltage	V_{BS}	Applied between $V_{B(U)}$ - $V_{S(U)}, V_{B(V)}$ - $V_{S(V)}, V_{B(W)}$ - $V_{S(W)}$	20	V
Input Signal Voltage	V _{IN}	$ \begin{array}{l} \mbox{Applied between IN}_{(UH)}, \mbox{IN}_{(VH)}, \mbox{IN}_{(WH)} \mbox{-} \mbox{COM}_{(H)} \\ \mbox{IN}_{(UL)}, \mbox{IN}_{(VL)}, \mbox{IN}_{(WL)} \mbox{-} \mbox{COM}_{(L)} \end{array} $	-0.3 ~ V _{CC} +0.3	V
Fault Output Supply Voltage	V _{FO}	Applied between V _{FO} - COM _(L)	-0.3 ~ V _{CC} +0.3	V
Fault Output Current	I _{FO}	Sink Current at V _{FO} Pin	5	mA
Current-Sensing Input Voltage	V _{SC}	Applied between C _{SC} - COM _(L)	-0.3 ~ V _{CC} +0.3	V

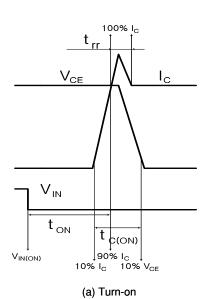
Total System

Item	Symbol	Condition	Rating	Unit
Self-Protection Supply Voltage Limit (Short-Circuit Protection Capability)	V _{PN(PROT)}	Applied to DC-Link, $V_{CC} = V_{BS} = 13.5 \sim 16.5 V$ $T_J = 125^{\circ}C$, Non-Repetitive, < 5 µs	400	V
Module Case Operation Temperature	Т _С	See Figure 2	-20 ~ 100	°C
Storage Temperature	T _{STG}		-20 ~ 125	°C
Isolation Voltage	V _{ISO}	60Hz, Sinusoidal, AC 1 Minute, Connect Pins to Heat Sink Plate	2500	V _{rms}

Thermal Resistance

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Junction to Case Thermal	R _{th(j-c)Q}	Inverter IGBT Part (per 1/6 module)	-	-	1.00	°C/W
Resistance	R _{th(j-c)F}	Inverter FWDi Part (per 1/6 module)	-	-	1.50	°C/W
Contact Thermal	R _{th(c-f)}	DBC Substrate (per 1 Module)	-	-	0.06	°C/W
Resistance	~ /	Thermal Grease Applied (2nd Note 3)				

2nd Notes:

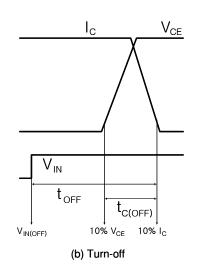

2. For the measurement point of case temperature(T_c), please refer to Figure 2. 3. The thickness of thermal grease should not be more than 100 μ m.

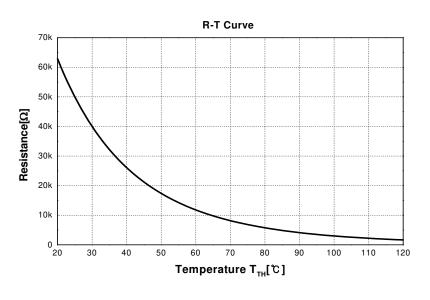
Electrical Characteristics

Inverter Part (T_J = 25°C, unless otherwise specified.)

Item	Symbol	Conditio	on	Min.	Тур.	Max.	Unit
Collector - emitter Saturation Voltage	V _{CE(SAT)}	$V_{CC} = V_{BS} = 15 V$ $V_{IN} = 0 V$	$I_{\rm C} = 50 \text{ A}, \text{ T}_{\rm J} = 25^{\circ} \text{C}$	-	-	2.4	V
FWDi Forward Voltage	V _{FM}	V _{IN} = 5 V	$I_{\rm C} = 50 \text{ A}, \text{ T}_{\rm J} = 25^{\circ} \text{C}$	-	-	2.1	V
Switching Times	t _{ON}	$V_{PN} = 300 \text{ V}, V_{CC} = V_{BS} = 18$	5 V	-	0.69	-	μS
	t _{C(ON)}	$_{\rm C} = 50 \text{ A}, \text{ T}_{\rm J} = 25^{\circ} \text{C}$		-	0.32	-	μS
	t _{OFF}	V _{IN} = 5 V ↔ 0 V, Inductive L (High- And Low-Side)	$_{\rm IN} = 5 V \leftrightarrow 0 V$, Inductive Load		1.32	-	μS
	t _{C(OFF)}	(High-And Low-Side)		-	0.46	-	μS
	t _{rr}	(2nd Note 4)		-	0.10	-	μS
Collector-Emitter Leakage Current	I _{CES}	$V_{CE} = V_{CES}, T_J = 25^{\circ}C$		-	-	250	μA

2nd Notes:
 4. t_{ON} and t_{OFF} include the propagation delay time of the internal drive IC. t_{C(ON)} and t_{C(OFF)} are the switching time of IGBT itself under the given gate driving condition internally. For the detailed information, please see Figure 4.




Figure 4. Switching Time Definition

©2006 Fairchild Semiconductor Corporation FSAM50SM60A Rev. C4

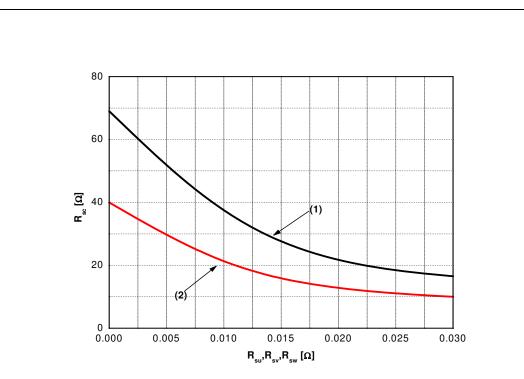
Item	Symbol	(Condition	Min.	Тур.	Max.	Unit
Quiescent V_{CC} Supply Current	I _{QCCL}	V _{CC} = 15 V IN _(UL, VL, WL) = 5V	V _{CC(L)} - COM _(L)	-	-	26	mA
	I _{QCCH}	V _{CC} = 15 V IN _(UH, VH, WH) = 5V	$V_{CC(UH)}, V_{CC(VH)}, V_{CC(WH)} - COM_{(H)}$	-	-	130	μA
Quiescent $\rm V_{BS}$ Supply Current	I _{QBS}	V _{BS} = 15 V IN _(UH, VH, WH) = 5V	$ \begin{array}{c} {\sf V}_{B(U)} \ \ - \ \ V_{S(U)}, \ \ V_{B(V)} \ \ \ - \ \ V_{S(V)}, \\ {\sf V}_{B(W)} \ \ - \ \ \ V_{S(W)} \end{array} $	-	-	420	μA
Fault Output Voltage	V _{FOH}		$V_{SC} = 0 \text{ V}, \text{ V}_{FO} \text{ Circuit: 4.7 k}\Omega \text{ to 5 V Pull-up}$			-	V
	V _{FOL}	V_{SC} = 1 V, V_{FO} Circuit	: 4.7 k Ω to 5 V Pull-up	-	-	1.1	V
Short-Circuit Trip Level	V _{SC(ref)}	V_{CC} = 15 V (2nd Note	V _{CC} = 15 V (2nd Note 5)			0.56	V
Sensing Voltage of IGBT Current	V_{SEN}	$R_{SC} = 40 \Omega$, $R_{SU} = R_S$ (See a Figure 6)	R_{SC} = 40 $\Omega,~R_{SU}$ = R_{SV} = R_{SW} = 0 Ω and I_{C} = 75 A (See a Figure 6)			0.56	V
Supply Circuit Under-	UV _{CCD}	Detection Level		11.5	12.0	12.5	V
Voltage Protection	UV _{CCR}	Reset Level		12.0	12.5	13.0	V
	UV _{BSD}	Detection Level		7.3	9.0	10.8	V
	UV _{BSR}	Reset Level		8.6	10.3	12.0	V
Fault Output Pulse Width	t _{FOD}	C _{FOD} = 33 nF (2nd No	ote 6)	1.4	1.8	2.0	ms
ON Threshold Voltage	V _{IN(ON)}	High-Side	Applied between IN _(UH) ,	-	-	0.8	V
OFF Threshold Voltage	V _{IN(OFF)}		$IN_{(VH)}$, $IN_{(WH)}$ - $COM_{(H)}$	3.0	-	-	V
ON Threshold Voltage	V _{IN(ON)}	Low-Side	Applied between IN(UL),	-	-	0.8	V
OFF Threshold Voltage	V _{IN(OFF)}	1	IN _(VL) , IN _(WL) - COM _(L)	3.0	-	-	V
Resistance of Thermistor	R _{TH}	@ T _{TH} = 25°C (2nd No	ote 7, Figure 5)	-	50	-	kΩ
		@ T _{TH} = 100°C (2nd N	Note 7, Figure 5)	-	3.0	-	kΩ

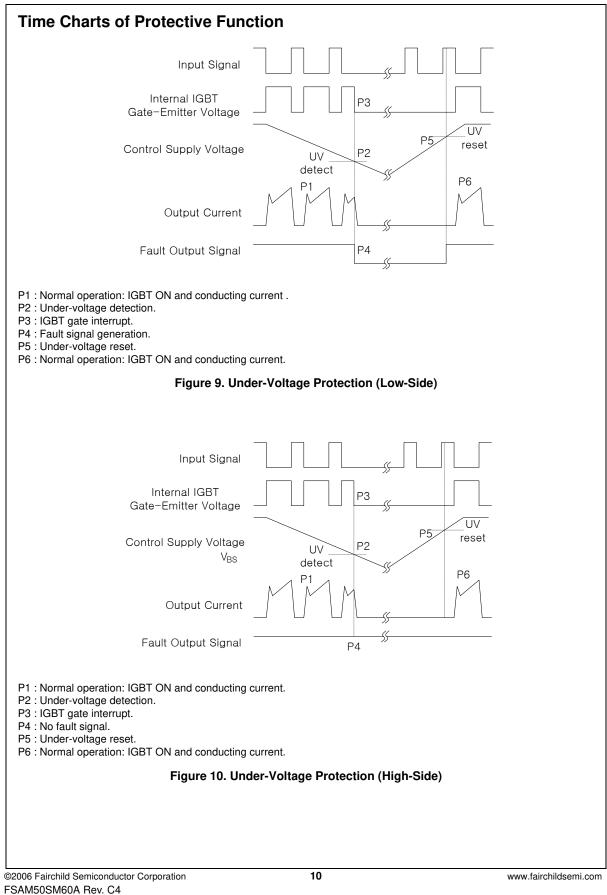
Electrical Characteristics ($T_J = 25^{\circ}C$, unless otherwise specified.)

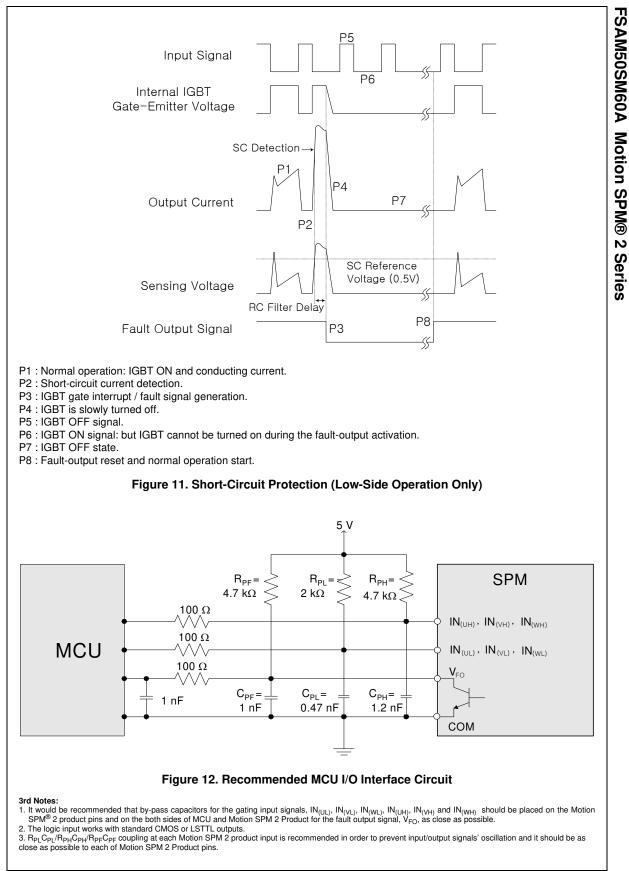
2nd Notes:
5. Short-circuit protection is functioning only at the low-sides. It would be recommended that the value of the external sensing resistor (R_{SC}) should be selected around 40 Ω in order to make the SC trip-level of about 75A at the shunt resistors (R_{SU}, R_{SV}, R_{SW}) of 0 Ω. For the detailed information about the relationship between the external sensing resistor (R_{SC}) and the shunt resistors (R_{SU}), R_{SV}, R_{SW}), please see Figure 6.
6. The fault-out pulse width t_{FOD} depends on the capacitance value of C_{FOD} according to the following approximate equation: C_{FOD} = 18.3 x 10⁻⁶ x t_{FOD} [F]
7. T_{TH} is the temperature of thermistor itself. To know case temperature (T_C), please make the experiment considering your application.

Figure 5. R-T Curve of The Built-in Thermistor

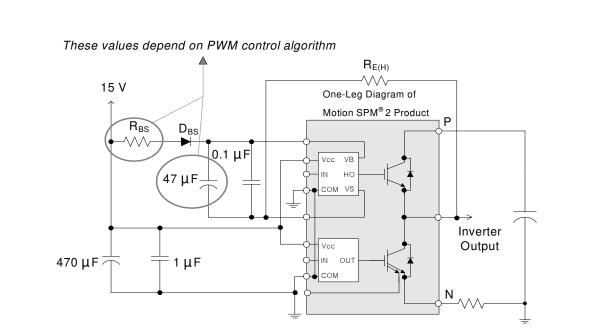
www.fairchildsemi.com




Figure 6. R_{SC} Variation by Change of Shunt Resistors (R_{SU}, R_{SV}, R_{SW}) for Short-Circuit Protection(1) @ Current Trip Level \Rightarrow 50 A(2) @ Current Trip Level \Rightarrow 75 A


Recommended	Operating	Conditions
-------------	-----------	------------

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Supply Voltage	V _{PN}	Applied between P - N _U , N _V , N _W	-	300	400	V
Control Supply Voltage	V _{CC}	$\begin{array}{c c} \mbox{Applied between } V_{CC(UH)}, \ V_{CC(VH)}, \ V_{CC(WH)} \ - & 1 \\ COM_{(H)}, \ V_{CC(L)} \ - & COM_{(L)} \end{array} \end{array}$		15.0	16.5	V
High-side Bias Voltage	V _{BS}	Applied between $V_{B(U)}$ - $V_{S(U)}, V_{B(V)}$ - $V_{S(V)}, V_{B(W)}$ - $V_{S(W)}$	13.0	15.0	18.5	V
Blanking Time for Preventing Arm-short	t _{dead}	For Each Input Signal	3.5	-	-	μS
PWM Input Signal	f _{PWM}	$T_C \le 100^{\circ}C, T_J \le 125^{\circ}C$	-	5	-	kHz
Minimum Input Pulse Width	PW _{IN(OFF)}	$\begin{array}{l} 200 \leq V_{PN} \leq 400 \ \text{V}, \ 13.5 \leq V_{CC} \leq 16.5 \ \text{V}, \\ 13.0 \leq V_{BS} \leq 18.5 \ \text{V}, \ 0 \leq I_C \leq 100 \ \text{A}, \\ -20 \leq T_J \leq 125^\circ\text{C} \\ \text{V}_{IN} = 5 \ \text{V} \leftrightarrow 0 \ \text{V}, \ \text{Inductive Load} \ \ (\text{2nd Note 8}) \end{array}$	3	-	-	μS
Input ON Threshold Voltage	V _{IN(ON)}	$\begin{array}{l} \text{Applied between IN}_{(\text{UH})}, \text{IN}_{(\text{VH})}, \text{IN}_{(\text{WH})} \text{ - } \\ \text{COM}_{(\text{H})}, \text{IN}_{(\text{UL})}, \text{IN}_{(\text{VL})}, \text{IN}_{(\text{WL})} \text{ - } \text{COM}_{(\text{L})} \end{array}$	0 ~ 0.65		5	V
Input OFF Threshold Voltage	V _{IN(OFF)}	$\begin{array}{l} \text{Applied between IN}_{(\text{UH})}, \text{IN}_{(\text{VH})}, \text{IN}_{(\text{WH})} \\ \text{COM}_{(\text{H})}, \text{IN}_{(\text{UL})}, \text{IN}_{(\text{VL})}, \text{IN}_{(\text{WL})} \\ \text{- COM}_{(\text{L})} \end{array}$	4 ~ 5.5			V


2nd Notes: 8. Motion SPM[®] 2 product might not make response if the PW_{IN(OFF)} is less than the recommended minimum value.

Mechanical Characteristics and Ratings Condition Min. Units Item Тур. Max. 10 Mounting Torque Mounting Screw: M4 Recommended 10 kg•cm 8 12 kg•cm (2nd Note 9 and 10) Recommended 0.98 N•m 0.78 0.98 1.17 N•m DBC Flatness See Figure 7 0 -+120 μm Weight 32 -g (+) (+) Figure 7. Flatness Measurement Position of The DBC Substrate 2nd Notes: Do not make over torque or mounting screws. Much mounting torque may cause DBC substrate cracks and bolts and AI heat-sink destruction. Do not make over torque or mounting screws. Figure 8 shows the recommended torque order for mounting screws. Uneven mounting can cause the Motion SPM[®] 2 package DBC substrate to be damaged. 2 Figure 8. Mounting Screws Torque Order (1 \rightarrow 2)

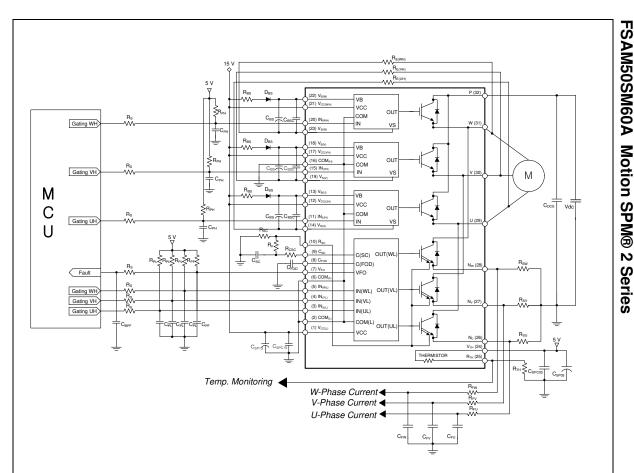
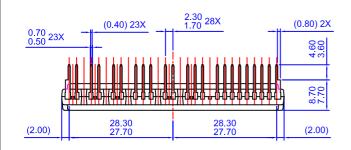
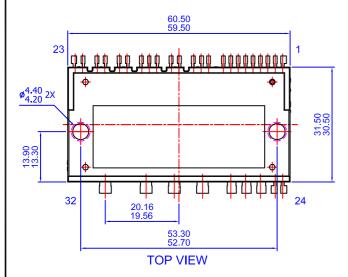

©2006 Fairchild Semiconductor Corporation FSAM50SM60A Rev. C4

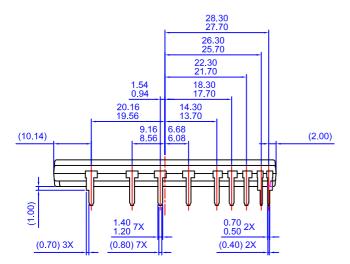
Figure 13. Recommended Bootstrap Operation Circuit and Parameters

3rd Notes:

- 4. It would be recommended that the bootstrap diode, D_{BS} , has soft and fast recovery characteristics.
- 5. The bootstrap resistor(R_{BS}) should be three times greater than R_{E(H)}. The recommended value of R_{E(H)} is 5.6Ω, but it can be increased up to 20 Ω for a slower dv/ dt of high-side.
- 6. The ceramic capacitor placed between V_{CC} COM should be over 1 μ F and mounted as close to the pins of the Motion SPM[®] 2 product as possible.

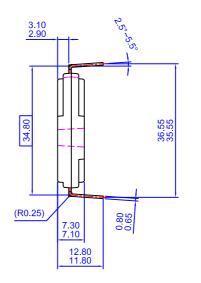


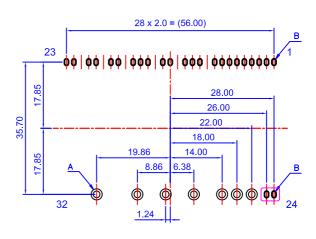

Figure 14. Application Circuit

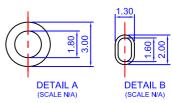

4th Notes:

- 1. Rp_CPL/RpHCPH /RpFCPF coupling at each Motion SPM[®] 2 product input is recommended in order to prevent input signals' oscillation and it should be as close as possible to each Motion SPM 2 product input pin.
- 2. By virtue of integrating an application specific type HVIC inside the Motion SPM 2 product, direct coupling to MCU terminals without any optocoupler or transformer isolation is possible.
- 3. V_{FO} output is open-collector type. This signal line should be pulled up to the positive side of the 5 V power supply with approximately 4.7 kΩ resistance. Please refer to Figure 12.
- 4. Sprig of around seven times larger than bootstrap capacitor C_{BS} is recommended.
 5. V_{FO} output pulse width should be determined by connecting an external capacitor(C_{FOD}) between C_{FOD}(pin 8) and COM_(L)(pin 2). (Example : if C_{FOD} = 33 nF, then
- 5. V_{FO} output puise what should be determined by connecting an external capacitor(C_{FOD}) between $C_{FOD}(pin 8)$ and $COM_{(L)}(pin 2)$. (Example : If $C_{FOD} = 33$ nF, then $t_{FO} = 1.8$ ms (typ.)) Please refer to the 2nd note 6 for calculation method. 6. Each input signal line should be pulled up to the 5 V power supply with approximately 4.7 k Ω (at high side input) or 2 k Ω (at low side input) resistance (other RC coupling circuits at each input may be needed depending on the PWM control scheme used and on the wiring impedance of the system's printed circuit board). Approximately a 0.22 ~ 2 nF by pass capacitor should be used across each power supply connection terminals.

- Approximately a 0.22 ~ 2 in by pass capacitor should be used across each power supply connection terminals. 7. To prevent errors of the protection function, the wiring around R_{SC} , R_F and C_{SC} should be as short as possible. 8. In the short-circuit protection circuit, please select the $R_F C_{SC}$ time constant in the range 3 ~ 4 µs. 9. Each capacitor should be mounted as close to the pins of the Motion SPM 2 product as possible. 10. To prevent surge destruction, the wiring between the smoothing capacitor and the P & N pins should be as short as possible. The use of a high frequency non-independent surge destruction of a log of the DON big terms and the P & N pins should be as short as possible. The use of a high frequency non-independent surger destruction of the DON big terms and the P & N pins should be as short as possible. The use of a high frequency non-
- inductive capacitor of around 0.1 ~ 0.22 µF between the P&N pins is recommended. 11. Relays are used at almost every systems of electrical equipments of home appliances. In these cases, there is hould be sufficient distance between the MCU and the relays. It is recommended that the distance be 5 cm at least.







NOTES: UNLESS OTHERWISE SPECIFIED A) THIS PACKAGE DOES NOT COMPLY TO ANY CURRENT PACKAGING STANDARD B) ALL DIMENSIONS ARE IN MILLIMETERS C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS D) () IS REFERENCE E) DRAWING FILENAME: MOD32BAREV3

LAND PATTERN RECOMMENDATIONS

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC