

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

March 2008

FSAV332 — Quad Video Switch with Individual Enables

Features

- Wide Bandwidth: 368MHz
- -84dB Non-adjacent Channel Crosstalk at 10MHz
- -49dB Off-Isolation at 10MHz
- 3Ω Typical On Resistance (Ron)
- Low-Power Consumption: 3µA Maximum
- Control Input: TTL Compatible

Applications

 Y/C Video or CVBS Video Switch in LCD Plasma, or Projector Displays

Description

The FSAV332 video switch is a quad high-speed video switch. Low on resistance allows inputs to be connected to outputs without adding propagation delay or generating additional ground bounce noise.

The device is organized as four one-bit switches with separate output enable (/OE) pins. When OE is LOW, the switch is ON and port A is connected to port B. When OE is HIGH, the switch is OPEN and a high-impedance state exists between the two ports.

Ordering Information

Part Number	Operating Temperature Range	Package	Packing Method
FSAV332MTC	-40 to +85°C	14-Lead, Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide	Tube
FSAV332MTCX	-40 to +85°C	14-Lead, Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide	Tape and Reel
FSAV332QSC	-40 to +85°C	16-Lead, Quarter Size Outline Package (QSOP), JEDEC MO-137, 0.150 inch Wide	Tube
FSAV332QSCX	-40 to +85°C	16-Lead, Quarter Size Outline Package (QSOP), JEDEC MO-137, 0.150 inch Wide	Tape and Reel

All packages are lead free per JEDEC: J-STD-020B standard.

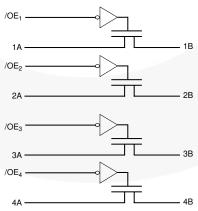


Figure 1. Logic Diagram

Pin Assignments

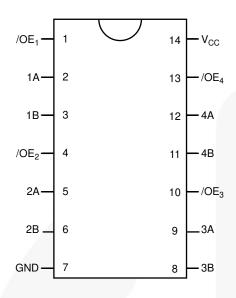


Figure 2. TSSOP Pin Assignments

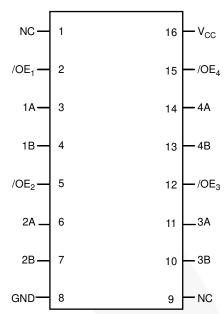


Figure 3. QSOP Pin Assignments

Pin Descriptions

Pin Names	Description		
/OE ₁ , /OE ₂ , /OE ₃ , /OE ₄	Bus Switch Enables		
1A, 2A, 3A, 4A	Bus A		
1B, 2B, 3B, 4B	Bus B		
NC	Not Connected		
V _{CC}	Supply Voltage		
GND	Ground		

Truth Table

Inputs	Inputs/Outputs			
/OE	A, B			
LOW	A = B			
HIGH	High Impedance			

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Min.	Max.	Unit
V _{CC}	Supply Voltage	-0.5	7.0	V
Vs	DC Switch Voltage ⁽¹⁾	-0.5	V _{CC} + 0.5	V
V _{IN}	DC Input Voltage ⁽¹⁾	-0.5	7.0	V
I _{IK}	DC Input Diode Current	-50		mA
l _{OUT}	DC Output Current		128	mA
T _{STG}	Storage Temperature Range	-65	+150	°C
ESD	Human Body Model, JESD22-A114		4000	V

Note:

 The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter		Min.	Max.	Unit
V _{CC}	Power Supply		4.75	5.25	V
V _{IN}	Control Input Voltage ⁽²⁾		0	V _{CC}	V
Vs	Switch Input Voltage		0	V _{CC}	V
T _A	Operating Temperature		-40	+85	°C
$\Theta_{\sf JA}$	Thermal Resistance	TSSOP		+115	°C/W
		QSOP		+127	C/VV

Note:

2. Unused control inputs must be held HIGH or LOW; they may not float.

DC Electrical Characteristics

All typical values are for V_{CC}=5.0V and 25°C, unless otherwise noted.

Symbol	Parameter	Conditions	V _{cc} (V)	Min.	Тур.	Max.	Units
V _{ANALOG}	Analog Signal Range		4.75 to 5.25	0		2	V
V _{IK}	Clamp Diode Voltage	I _{IN} =-18mA	4.75			-1.2	V
V _{IH}	High-Level Input Voltage		4.75 to 5.25	2.0			V
V _{IL}	Low-Level Input Voltage		4.75 to 5.25			0.8	V
I _{IN}	Input Leakage Current	$V_{IN} = 0V$ to V_{CC}	5.25			±1.0	μΑ
loz	Off-state Leakage Current	$0 \le A, B \le V_{CC}$	5.25			±1.0	μΑ
R _{ON}	Switch On Resistance ⁽³⁾	$V_{IN}=1V$, $R_L=75\Omega$, $I_{ON}=13mA$	4.75		3	7	Ω
LON	Switch On nesistance	V_{IN} =2V, R_L =75 Ω , I_{ON} =26mA	4.75		7	10	7.2
Icc	Quiescent Supply Current	V _{IN} = 0V V _{CC} or I _{OUT} =0	5.25			3	μΑ

Note:

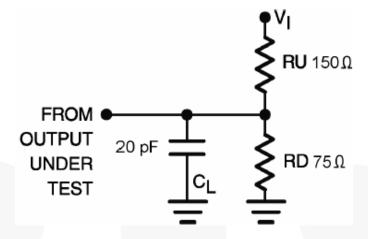
3. Measured by the voltage drop between the A and B pins at the indicated current through the switch. On resistance is determined by the lower of the voltages on the A or B pins.

AC Electrical Characteristics

All typical values are for V_{CC} =5.0V at T_{A} =25°C, unless otherwise noted.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units	Figure
t _{ON}	Turn-on Time	V _{IN} =7V for t _{PZL} , V _{IN} =Open for t _{PZH}	1.0		5.0	ns	Figure 4 Figure 5
toff	Turn-off Time	V _{IN} =7V for t _{PZL} , V _{IN} =Open for t _{PZH}	1.0		5.0	ns	Figure 4 Figure 5
t _{PLH} , t _{PHL}	Propagation Delay ⁽⁴⁾	V _{IN} =Open			0.1	ns	Figure 4 Figure 5
D_G	Differential Gain	$R_L=150\Omega$, $f=3.58MHz$		0.29		%	
D _P	Differential Phase	$R_L=150\Omega$, $f=3.58MHz$		0.1		0	
O _{IRR}	Off Isolation	f=10MHz, R _L =150Ω		-84		dB	Figure 6
X _{TALK}	Crosstalk	$R_L=150\Omega$, $f=10MHz$		-54		dB	Figure 7
Bw	-3dB Bandwidth	R _L =150Ω		368		MHz	Figure 8

Note:


4. This parameter is guaranteed by design.

Capacitance

All typical values are for T_A = -40 to +85°C.

Symbol	Parameter	Conditions	Тур.	Units
C _{IN}	Control Pin Input Capacitance	V _{CC} =5.0V	3.0	pF
C _{ON}	A/B On Capacitance	V _{CC} =5.0V, /OE=0V	30.0	pF
C _{OFF}	Port B Off Capacitance	V _{CC} and /OE=5.0V	5.0	pF

AC Loadings and Waveforms

Notes: Input drive by 50Ω source terminated in 50Ω . C_L includes load and stray capacitance. Input PRR=1.0MHz, t_W =500ns.

Figure 4. AC Test Circuit

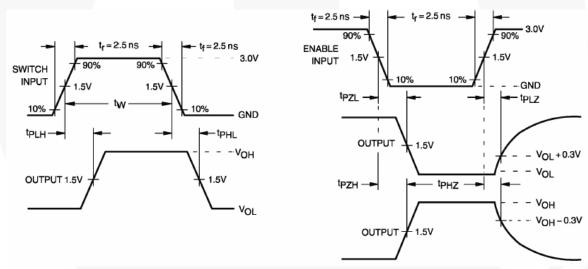


Figure 5. AC Waveforms

Test Diagrams

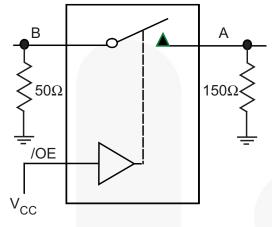


Figure 6. Off Isolation

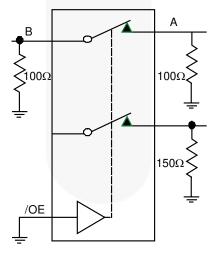


Figure 7. Crosstalk

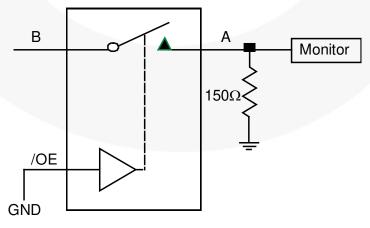


Figure 8. Bandwidth

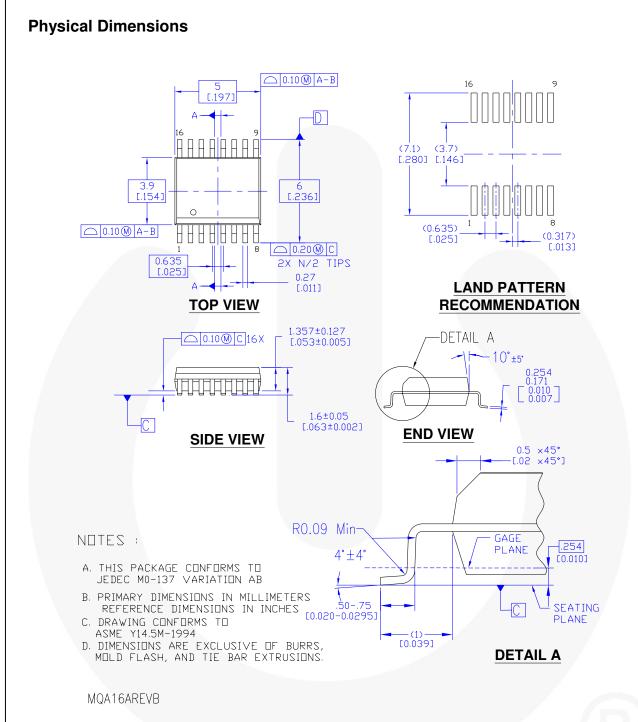


Figure 9. 16-Lead, Quarter Size Outline Package (QSOP), JEDEC MO-137, 0.150-inch Wide

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/

Physical Dimensions

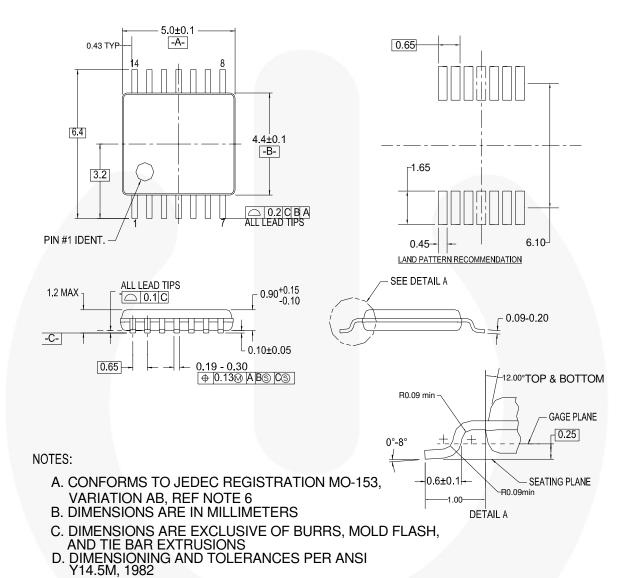


Figure 10. 14-Lead, Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/.

E. LANDPATTERN STANDARD: SOP65P640X110-14M

F. DRAWING FILE NAME: MTC14REV6

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

ACEx® Build it Now™ CorePLUS™ CorePOWER™ CROSSVOL™ CTL TM Current Transfer Logic™

EcoSPARK® EfficentMax™ EZSWITCH™ *

Fairchild[®] Fairchild Semiconductor® FACT Quiet Series™ FACT

FAST® FastyCore™ FlashWriter®

FPS™ F-PESTM FRFET®

Global Power Resources Green FPS™

Green FPS™e-Series™ GTO™

IntelliMAX™ ISOPLANAR™ MegaBuck™ MICROCOUPLER™

MicroFET™ MicroPak™ MillerDrive™ MotionMax™ Motion-SPM™ OPTOLOGIC® OPTOPLANAR® PDP SPM™ Power-SPM™ PowerTrench®

Programmable Active Droop™

QFET QSTM

> Quiet Series™ RapidConfigure™

Saving our world, 1mW at a time™

SmartMax ™

SMART START™

SPM® STEALTH* SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS™

SyncFET™ SYSTEM ® The Power Franchise®

wer TinyBoost™

TinyBuck™ TinyLogic[®] TINYOPTO™ TinvPower™ TinyPWM™ TinyWire™

μSerDes™

UHC' Ultra FRFET™ UniFET™ **VCXTM** VisualMax™

* EZSWITCH™ and FlashWriter® are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition		
Advance Information	Formative / In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.		
Obsolete	Not In Production	This datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.		

Rev. 134