imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized applications, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an equif prese

FSBF10CH60BT Motion SPM[®] 3 Series

Features

- UL Certified No. E209204 (UL1557)
- 600 V 10 A 3-Phase IGBT Inverter with Integral Gate Drivers and Protection
- · Low-Loss, Short-Circuit Rated IGBTs
- Built-In Bootstrap Diodes and Dedicated Vs Pins Simplify PCB Layout
- Separate Open-Emitter Pins from Low-Side IGBTs for Three-Phase Current Sensing
- · Single-Grounded Power Supply
- Isolation Rating: 2500 V_{rms} / min.

Applications

· Motion Control - Home Appliance / Industrial Motor

Related Resources

• AN-9044 - Motion SPM® 3 Series Users Guide

January 2014

General Description

FSBF10CH60BT is an advanced Motion SPM[®] 3 module providing a fully-featured, high-performance inverter output stage for AC Induction, BLDC, and PMSM motors. These modules integrate optimized gate drive of the built-in IGBTs to minimize EMI and losses, while also providing multiple on-module protection features including under-voltage lockouts, over-current shutdown, and fault reporting. The built-in, high-speed HVIC requires only a single supply voltage and translates the incoming logic-level gate inputs to the high-voltage, high-current drive signals required to properly drive the module's internal IGBTs. Separate negative IGBT terminals are available for each phase to support the widest variety of control algorithms.

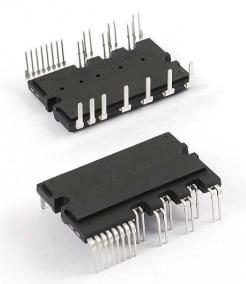


Figure 1. Package Overview

Package Marking and Ordering Information

Device	Device Marking	Package	Packing Type	Quantity
FSBF10CH60BT	FSBF10CH60BT	SPMJA-027	RAIL	10

Integrated Power Functions

• 600 V - 10 A IGBT inverter for three-phase DC / AC power conversion (please refer to Figure 3)

Integrated Drive, Protection, and System Control Functions

- For inverter high-side IGBTs: gate drive circuit, high-voltage isolated high-speed level shifting control circuit Under-Voltage Lock-Out Protection (UVLO)
 Note: Available bootstrap circuit example is given in Figures 12 and 13.
- For inverter low-side IGBTs: gate drive circuit, Short-Circuit Protection (SCP)
 control supply circuit Under-Voltage Lock-Out Protection (UVLO)
- · Fault signaling: corresponding to UVLO (low-side supply) and SC faults
- · Input interface: active-HIGH interface, works with 3.3 / 5 V logic, Schmitt-trigger input

Pin Configuration

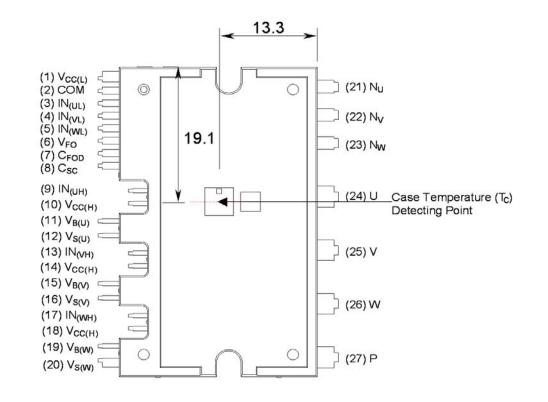


Figure 2. Top View

Pin Number	Pin Name	Pin Description
1	V _{CC(L)}	Low-Side Common Bias Voltage for IC and IGBTs Driving
2	COM	Common Supply Ground
3	IN _(UL)	Signal Input for Low-Side U-Phase
4	IN _(VL)	Signal Input for Low-Side V-Phase
5	IN _(WL)	Signal Input for Low-Side W-Phase
6	V _{FO}	Fault Output
7	C _{FOD}	Capacitor for Fault Output Duration Selection
8	C _{SC}	Capacitor (Low-Pass Filter) for Short-Circuit Current Detection Input
9	IN _(UH)	Signal Input for High-Side U-Phase
10	V _{CC(H)}	High-Side Common Bias Voltage for IC and IGBTs Driving
11	V _{B(U)}	High-Side Bias Voltage for U-Phase IGBT Driving
12	V _{S(U)}	High-Side Bias Voltage Ground for U-Phase IGBT Driving
13	IN _(VH)	Signal Input for High-Side V-Phase
14	V _{CC(H)}	High-Side Common Bias Voltage for IC and IGBTs Driving
15	V _{B(V)}	High-Side Bias Voltage for V-Phase IGBT Driving
16	V _{S(V)}	High-Side Bias Voltage Ground for V Phase IGBT Driving
17	IN _(WH)	Signal Input for High-Side W-Phase
18	V _{CC(H)}	High-Side Common Bias Voltage for IC and IGBTs Driving
19	V _{B(W)}	High-Side Bias Voltage for W-Phase IGBT Driving
20	V _{S(W)}	High-Side Bias Voltage Ground for W-Phase IGBT Driving
21	NU	Negative DC-Link Input for U-Phase
22	N _V	Negative DC-Link Input for V-Phase
23	N _W	Negative DC-Link Input for W-Phase
24	U	Output for U-Phase
25	V	Output for V-Phase
26	W	Output for W-Phase
27	Р	Positive DC-Link Input

Internal Equivalent Circuit and Input/Output Pins P (27) (19) V VB (18) V_{cc} VCC OUT COM (17) IN_{(V} W (26) vs IN (20) V_{S(W)} (15) V_{B(1} VB (14) V_{cc} VCC OUT COM (13) IN_(VH) vs V (25) IN (1<u>6)</u> V_{S(V)} (11) V_F VB (10) V_{cc} vcc OUT COM (9) IN_{(UH} vs U (24) IN (12) V_{S(U)} (8) C_{SC} C(SC) OUT(WL) (7) C_{FOD} C(FOD) N_w (23) (6) V_{FO} VFO (5) IN_(WL) IN(WL) OUT(VL) (4) IN_(VL) IN(VL) N_v (22) (3) IN_(UL) IN(UL) (2) COM СОМ OUT(UL) (1) V_{CC(L)} vcc V_{SL} N_U (21)

Figure 3. Internal Block Diagram

1st Notes:

1. Inverter low-side is composed of three IGBTs, freewheeling diodes for each IGBT, and one control IC. It has gate drive and protection functions.

2. Inverter power side is composed of four inverter DC-link input terminals and three inverter output terminals.

3. Inverter high-side is composed of three IGBTs, freewheeling diodes, and three drive ICs for each IGBT.

Absolute Maximum Ratings (T_J = 25°C, unless otherwise specified.)

Inverter Part

Symbol	Parameter	Conditions	Rating	Unit
V _{PN}	Supply Voltage	Applied between P - N _U , N _V , N _W	450	V
V _{PN(Surge)}	Supply Voltage (Surge)	Applied between P - N _U , N _V , N _W	500	V
V _{CES}	Collector - Emitter Voltage		600	V
± I _C	Each IGBT Collector Current	$T_C = 25^{\circ}C, \ T_J \leq 150^{\circ}C$	10	Α
± I _{CP}	Each IGBT Collector Current (Peak)	T_C = 25°C, $T_J \leq$ 150°C, Under 1 ms Pulse Width	20	A
P _C	Collector Dissipation	T _C = 25°C per Chip	20	W
Τ _J	Operating Junction Temperature	(2nd Note 1)	- 40 ~ 150	°C

2nd Notes:

1. The maximum junction temperature rating of the power chips integrated within the Motion SPM[®] 3 product is 150°C (at $T_C \le 125$ °C).

Control Part

Symbol	Parameter	Conditions	Rating	Unit
V _{CC}	Control Supply Voltage	Applied between V _{CC(H)} , V _{CC(L)} - COM	20	V
V_{BS}	High-Side Control Bias Voltage	Applied between $V_{B(U)}$ - $V_{S(U)}, ~V_{B(V)}$ - $V_{S(V)}, ~V_{B(W)}$ - $V_{S(W)}$	20	V
V _{IN}	Input Signal Voltage	$\begin{array}{llllllllllllllllllllllllllllllllllll$	-0.3 ~ V _{CC} + 0.3	V
V _{FO}	Fault Output Supply Voltage	Applied between V _{FO} - COM	$-0.3 \sim V_{CC} + 0.3$	V
I _{FO}	Fault Output Current	Sink Current at V _{FO} pin	5	mA
V _{SC}	Current-Sensing Input Voltage	Applied between C _{SC} - COM	$-0.3 \sim V_{CC} + 0.3$	V

Bootstrap Diode Part

Symbol	Parameter	Conditions	Rating	Unit
V _{RRM}	Maximum Repetitive Reverse Voltage		600	V
١ _F	Forward Current	$T_C = 25^{\circ}C, T_J \le 150^{\circ}C$	0.5	Α
I _{FP}	Forward Current (Peak)	T_C = 25°C, $T_J \leq 150^\circ C$. Under 1 ms Pulse Width	2.0	A
TJ	Operating Junction Temperature		-40 ~ 150	°C

Total System

Symbol	Parameter	Conditions	Rating	Unit
V _{PN(PROT)}	Self-Protection Supply Voltage Limit (Short-Circuit Protection Capability)	$V_{CC} = V_{BS} = 13.5 \sim 16.5 V$ T _J = 150°C, Non-Repetitive, < 2 µs	400	V
T _C	Module Case Operation Temperature	-40°C \leq T _J \leq 150°C, See Figure 2	-40 ~ 125	°C
T _{STG}	Storage Temperature		-40 ~ 125	°C
V _{ISO}	Isolation Voltage	60 Hz, Sinusoidal, AC 1 Minute, Connect Pins to Heat Sink Plate	2500	V _{rms}

Thermal Resistance

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
R _{th(j-c)Q}	Junction to Case Thermal Resistance	Inverter IGBT Part (per 1 / 6 module)	-	-	6.2	°C / W
$R_{th(j-c)F}$		Inverter FWDi Part (per 1 / 6 module)	-	-	6.5	°C / W

2nd Notes:

2. For the measurement point of case temperature (T_C), please refer to Figure 2.

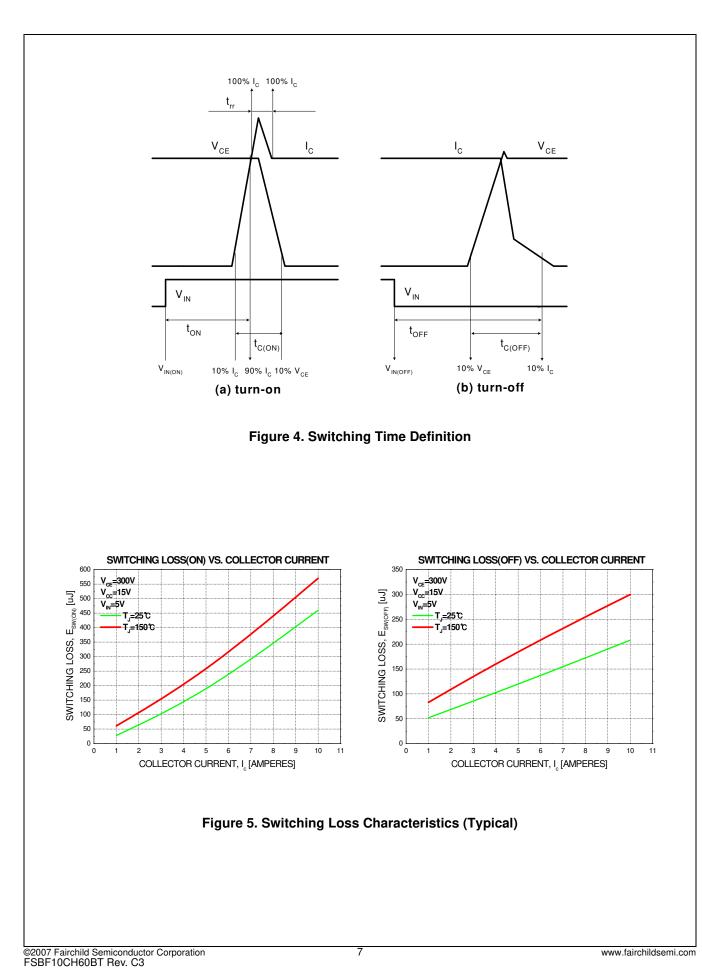
Electrical Characteristics (T_J = 25°C, unless otherwise specified.)

Inverter Part

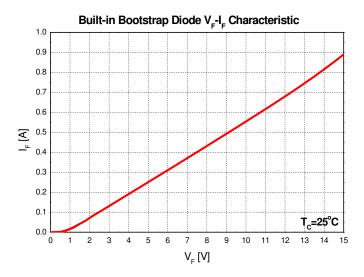
S	ymbol	Parameter	Condi	tions	Min.	Тур.	Max.	Unit
V	CE(SAT)	Collector - Emitter Saturation Voltage	V _{CC} = V _{BS} = 15 V V _{IN} = 5 V	I _C = 10 A, T _J = 25°C	-	-	2.2	V
	V _F	FWDi Forward Voltage	$V_{IN} = 0 V$	$I_F = 10 \text{ A}, \text{ T}_J = 25^{\circ}\text{C}$	-	-	2.6	V
HS	t _{ON}	Switching Times	V_{PN} = 300 V, V_{CC} = V_B	_S = 15 V	-	0.75	-	μs
	t _{C(ON)}		$I_{C} = 10 \text{ A}$ $V_{IN} = 0 \text{ V} \leftrightarrow 5 \text{ V}$, Induc	tive Load	-	0.15	-	μs
	t _{OFF}		(2nd Note 3)		-	0.50	-	μs
	t _{C(OFF)}				-	0.15	-	μs
	t _{rr}				-	0.10	-	μS
LS	t _{ON}		$V_{PN} = 300 \text{ V}, V_{CC} = V_B$	_S = 15 V	-	0.50	-	μs
	t _{C(ON)}		$I_{C} = 10 \text{ A}$ $V_{IN} = 0 \text{ V} \leftrightarrow 5 \text{ V}$, Induc	tive Load	-	0.25	-	μs
	t _{OFF}		(2nd Note 3)		-	0.50	-	μS
	t _{C(OFF)}]			-	0.15	-	μs
	t _{rr}				-	0.10	-	μs
	I _{CES}	Collector - Emitter Leakage Current	$V_{CE} = V_{CES}$		-	-	1	mA

2nd Notes:

3. t_{ON} and t_{OFF} include the propagation delay of the internal drive IC. t_{C(ON)} and t_{C(OFF)} are the switching time of IGBT itself under the given gate driving condition internally. For the detailed information, please see Figure 4.


Control Part

Symbol	Parameter	Co	nditions	Min.	Тур.	Max.	Unit
IQCCL	Quiescent V _{CC} Supply Current	V _{CC} = 15 V IN _(UL, VL, WL) = 0 V	V _{CC(L)} - COM	-	-	23	mA
IQCCH		$V_{CC} = 15 \text{ V}$ $IN_{(UH, VH, WH)} = 0 \text{ V}$	V _{CC(H)} - COM	-	-	600	μA
I _{QBS}	Quiescent V _{BS} Supply Current	V _{BS} = 15 V IN _(UH, VH, WH) = 0 V	$ \begin{array}{l} V_{B(U)} \mbox{-} V_{S(U)}, V_{B(V)} \mbox{-} V_{S(V)}, \\ V_{B(W)} \mbox{-} V_{S(W)} \end{array} $	-	-	500	μA
V_{FOH}	Fault Output Voltage	V _{SC} = 0 V, V _{FO} Circu	it: 4.7 k Ω to 5 V Pull-up	4.5	-	-	V
V _{FOL}		V_{SC} = 1 V, V_{FO} Circuit: 4.7 k Ω to 5 V Pull-up		-	-	0.8	V
V _{SC(ref)}	Short-Circuit Current Trip Level	V _{CC} = 15 V (2nd Note 4)		0.45	0.50	0.55	V
TSD	Over-Temperature Protection	Temperature at LVIC		-	160	-	°C
∆TSD	Over-Temperature Protection Hysterisis	Temperature at LVIC		-	5	-	°C
UV _{CCD}	Supply Circuit	Detection Level		10.7	11.9	13.0	V
UV _{CCR}	Under-Voltage Protection	Reset Level		11.2	12.4	13.4	V
UV _{BSD}		Detection Level		10	11	12	V
UV _{BSR}		Reset Level		10.5	11.5	12.5	V
t _{FOD}	Fault-Out Pulse Width	C _{FOD} = 33 nF (2nd N	lote 5)	1.0	1.8	-	ms
V _{IN(ON)}	ON Threshold Voltage	Applied between IN	(UH) , $IN_{(VH)}$, $IN_{(WH)}$, $IN_{(UL)}$,	2.8	-	-	V
V _{IN(OFF)}	OFF Threshold Voltage	IN _(VL) , IN _(WL) - COM		-	-	0.8	V


2nd Notes:

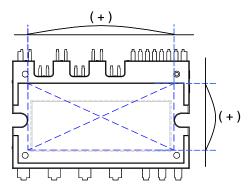
4. Short-circuit protection is functioning only at the low-sides.

5. The fault-out pulse width t_{FOD} depends on the capacitance value of C_{FOD} according to the following approximate equation: $C_{FOD} = 18.3 \times 10^{-6} \times t_{FOD}$ [F]

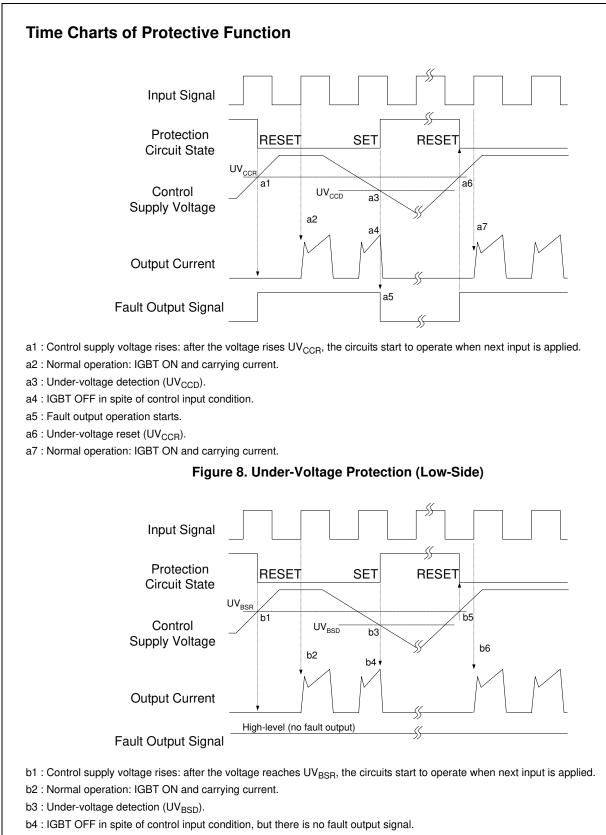
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V _F	Forward Voltage	I _F = 0.1 A, T _C = 25°C	-	2.5	-	V
t _{rr}	Reverse-Recovery Time	I _F = 0.1 A, T _C = 25°C	-	80	-	ns

Figure 6. Built-in Bootstrap Diode Characteristics

2nd Notes:

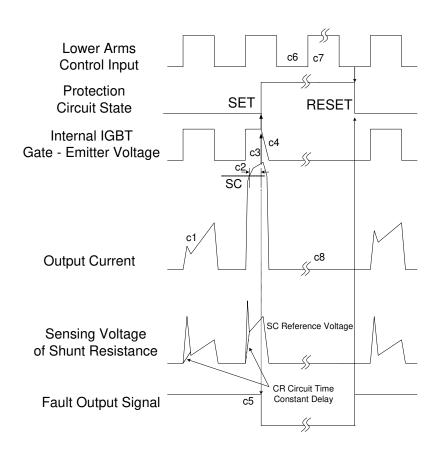

6. Built-in bootstrap diode includes around 15 $\,\Omega\,$ resistance characteristic.

Recommended Operating Conditions


Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V _{PN}	Supply Voltage	Applied between P - N _U , N _V , N _W	-	300	400	V
V _{CC}	Control Supply Voltage	Applied between V _{CC(H)} , V _{CC(L)} - COM	13.5	15.0	16.5	V
V _{BS}	High-Side Bias Voltage	Applied between $V_{B(U)}$ - $V_{S(U)},V_{B(V)}$ - $V_{S(V)},V_{B(W)}$ - $V_{S(W)}$	13.0	15.0	18.5	V
$\frac{dV_{CC}}{dV_{BS}}/\frac{dt}{dt}$	Control Supply Variation		-1	-	1	V / μs
t _{dead}	Blanking Time for Preventing Arm-Short	Each Input Signal	2	-	-	μS
f _{PWM}	PWM Input Signal	$-40^{\circ}C \leq T_{C} \leq 125^{\circ}C, \ -40^{\circ}C \leq T_{J} \leq 150^{\circ}C$	-	-	20	kHz
V_{SEN}	Voltage for Current Sensing	Applied between N _U , N _V , N _W - COM (Including Surge Voltage)	-4		4	V

Mechanical Characteristics and Ratings

Parameter	C	Conditions			Max.	Unit
Mounting Torque	Mounting Screw: M3	Recommended 0.62 N•m	0.51	0.62	1.00	N•m
Device Flatness		See Figure 7	0	-	+120	μm
Weight			-	15.40	-	g



b5 : Under-voltage reset (UV $_{\mbox{BSR}}$).

b6 : Normal operation: IGBT ON and carrying current.

Figure 9. Under-Voltage Protection (High-Side)

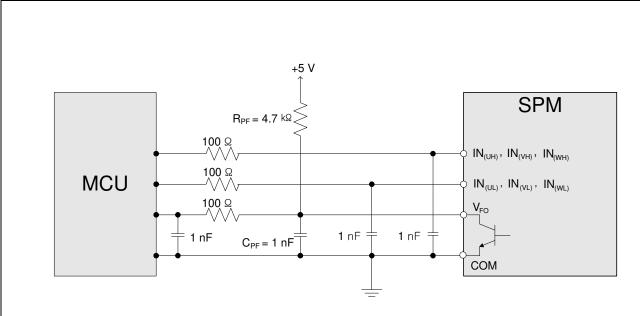
(with the external shunt resistance and CR connection)

c1 : Normal operation: IGBT ON and carrying current.

c2 : Short-circuit current detection (SC trigger).

c3 : Hard IGBT gate interrupt.

c4 : IGBT turns OFF.

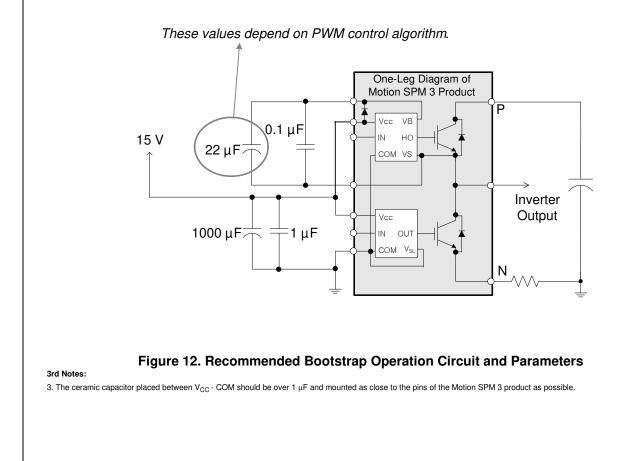

c5 : Fault output timer operation starts: the pulse width of the fault output signal is set by the external capacitor C_{FO} .

c6 : Input "LOW": IGBT OFF state.

c7 : Input "HIGH": IGBT ON state, but during the active period of fault output, the IGBT doesn't turn ON.

c8 : IGBT OFF state.

Figure 10. Short-Circuit Protection (Low-Side Operation Only)



3rd Notes:

1. RC coupling at each input might change depending on the PWM control scheme in the application and the wiring impedance of the application's printed circuit board. The input signal section of the Motion SPM[®] 3 product integrates a 5 kΩ (typ.) pull-down resistor. Therefore, when using an external filtering resistor, please pay attention to the signal voltage drop at input terminal.

2. The logic input works with standard CMOS or LSTTL outputs.

+15 V P (27 (19) V_{B(W} ¢ VB (18) VCC/H vcc OU. сом Ca (17) IN IN W (2 vs (20) V_® (15) V VB (14) V_{CC(H} vcc OU. сом (13) IN IN vs Μ (11) V_{B(L} VB (10) V_{CCIE} vcc Vdc Cncs OU. сом Cas (9) IN vs IN (12) V_{S(U} -Csc (8) C_S C(SC) OUT(WL CFOD (6) V_{FO} C(FOD) N_w (2 VEO (5) IN_{(W} OUT(VL IN(WL) (4) IN_{(VL} IN(VL) N_V (22 (3) IN_{(UL} IN(UL) (2) COM сом OUT(UL (1) V_{CC(1} vcc Rs VsL N∪ (21 F \sim Cspi CSPO

CE

C

C

4th Notes:

Gating WH

Gating VH

Gating UH

Fault

Gating WL

Gating VL

Gating UL

Μ

С

U

1. To avoid malfunction, the wiring of each input should be as short as possible (less than 2 - 3cm).

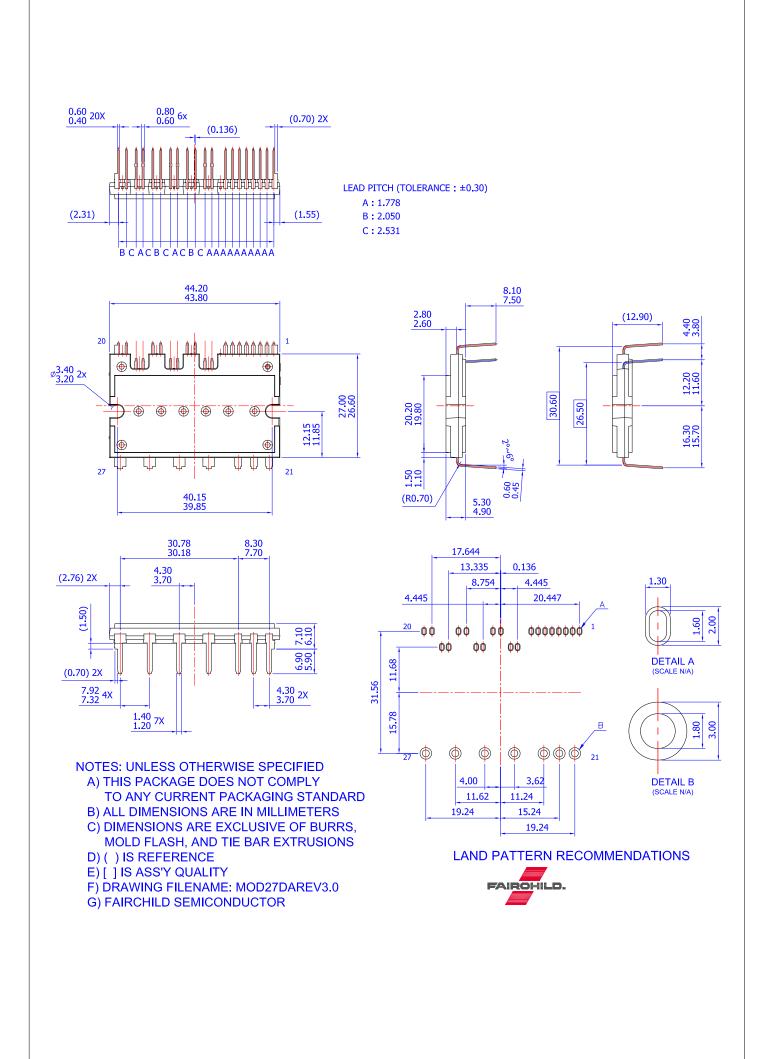
+5 V

RPF

2. By virtue of integrating an application-specific type of HVIC inside the Motion SPM® 3 product, direct coupling to MCU terminals without any optocoupler or transformer isolation is possible.

Figure 13. Typical Application Circuit

W-Phase Current


V-Phase Current ┥ U-Phase Current 4

- 3. V_{FO} output is open-collector type. This signal line should be pulled up to the positive side of the 5 V power supply with approximately 4.7 k Ω resistance (please refer to Figure 11).
- C_{SP15} of around seven times larger than bootstrap capacitor C_{BS} is recommended.

Input Signal for

Short-Circuit Protection

- 5. V_{FO} output pulse width should be determined by connecting an external capacitor (C_{FOD}) between C_{FOD} (pin 7) and COM (pin 2). (Example: if C_{FOD} = 33 nF, then t_{FO} = 1.8 ms (typ.)) Please refer to the 2nd note 5 for calculation method.
- 6. Input signal is active-HIGH type. There is a 5 kΩ resistor inside the IC to pull down each input signal line to GND. RC coupling circuits should be used to prevent input signal oscillation. R_SC_{PS} time constant should be selected in the range 50 ~ 150 ns. C_{PS} should not be less than 1 nF (recommended R_S = 100 Ω, C_{PS} = 1 nF).
- 7. To prevent errors of the protection function, the wiring around R_{F} and C_{SC} should be as short as possible.
- 8. In the short-circuit protection circuit, please select the R_FC_{SC} time constant in the range 1.5 \sim 2.0 $\mu s.$
- 9. Each capacitor should be mounted as close to the pins of the Motion SPM 3 product as possible.
- 10. To prevent surge destruction, the wiring between the smoothing capacitor and the P & GND pins should be as short as possible. The use of a high-frequency non-inductive capacitor of around 0.1 \sim 0.22 μF between the P & GND pins is recommended.
- 11. Relays are used in almost every systems of electrical equipment in home appliances. In these cases, there should be sufficient distance between the MCU and the relays. 12. C_{SPC15} should be over 1 µF and mounted as close to the pins of the Motion SPM 3 product as possible.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC