: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

FSCM0565R

Green Mode Fairchild Power Switch (FPS ${ }^{\text {TM }}$)

Features

- Internal Avalanche Rugged SenseFET
- Low Start-up Current (max 40uA)
- Low Power Consumption under 1 W at 240 VAC and 0.4W Load
- Precise Fixed Operating Frequency (66 kHz)
- Frequency Modulation for low EMI
- Pulse by Pulse Current Limiting (Adjustable)
- Over Voltage Protection (OVP)
- Over Load Protection (OLP)
- Thermal Shutdown Function (TSD)
- Auto-Restart Mode
- Under Voltage Lock Out (UVLO) with Hysteresis
- Built-in Soft Start (15ms)

Application

- SMPS for VCR, SVR, STB, DVD and DVCD
- Adaptor
- SMPS for LCD Monitor

Related Application Notes

- AN-4137: Design Guidelines for Off-line Flyback Converters Using Fairchild Power Switch (FPS)
- AN-4140: Transformer Design Consideration for off-line Flyback Converters using Fairchild Power Switch
- AN-4141: Troubleshooting and Design Tips for Fairchild Power Switch Flyback Applications
- AN-4148: Audible Noise Reduction Techniques for FPS Applications

Description

The FSCM0565R is an integrated Pulse Width Modulator (PWM) and SenseFET specifically designed for high performance offline Switch Mode Power Supplies (SMPS) with minimal external components. This device is an integrated high voltage power switching regulator which combines an avalanche rugged SenseFET with a current mode PWM control block. The PWM controller includes integrated fixed frequency oscillator, under voltage lockout, leading edge blanking (LEB), optimized gate driver, internal soft start, temperature compensated precise current sources for a loop compensation, and self protection circuitry. Compared with a discrete MOSFET and PWM controller solution, it can reduce total cost, component count, size, and weight while simultaneously increasing efficiency, productivity, and system reliability. This device is a basic platform well suited for cost effective designs of flyback converters.

OUTPUT POWER TABLE				
PRODUCT	$230 \mathrm{VAC} \pm 15 \%{ }^{(3)}$		$85-265 \mathrm{VAC}$	
	Adapt- $\mathrm{er}^{(1)}$	Open Frame $^{(2)}$	Adapt- er $^{(1)}$	Open Frame $^{(2)}$
	50 W	65 W	40 W	50 W
FSCM0765RJ	65 W	70 W	50 W	60 W
FSCM0565RI	50 W	65 W	40 W	50 W
FSCM0765RI	65 W	70 W	50 W	60 W
FSCM0565RG	70 W	85 W	60 W	70 W
FSCM0765RG	85 W	95 W	70 W	85 W

Table 1. Maximum Output Power

Notes:

1. Typical continuous power in a non-ventilated enclosed adapter measured at $50^{\circ} \mathrm{C}$ ambient.
2. Maximum practical continuous power in an open-frame design at $50^{\circ} \mathrm{C}$ ambient.
3. 230 VAC or $100 / 115$ VAC with doubler.

Typical Circuit

Figure 1. Typical Flyback Application

Internal Block Diagram

Figure 2. Functional Block Diagram of FSCM0565R

Pin Definitions

Pin Number	Pin Name	Pin Function Description
1	Drain	This pin is the high voltage power SenseFET drain. It is designed to drive the transformer directly.
2	GND	This pin is the control ground and the SenseFET source.
3	Vcc	This pin is the positive supply voltage input. Initially, During start up, the power is supplied through the startup resistor from DC link. When Vcc reaches 12V, the power is supplied from the auxiliary transformer winding.
4	Feedback (FB)	This pin is internally connected to the inverting input of the PWM comparator. The collector of an optocoupler is typically tied to this pin. For stable operation, a capacitor should be placed between this pin and GND. If the voltage of this pin reaches 6.0V, the over load protection is activated resulting in shutdown of the FPS.
5	N.C.	This pin is not connected.
6	limit	This pin is for the pulse by pulse current limit level programming. By using a resistor to GND on this pin, the current limit level can be changed. If this pin is left floating, the typical current limit will be 2.5A.

Pin Configuration

Figure 3. Pin Configuration (Top View)

Absolute Maximum Ratings

($\mathrm{Ta}=25^{\circ} \mathrm{C}$, unless otherwise specified.)

Parameter	Symbol	Value	Unit
Drain-Source (GND) Voltage ${ }^{(1)}$	VDSS	650	V
Drain-Gate Voltage (RGS=1MS)	VDGR	650	V
Gate-Source (GND) Voltage	VGS	± 30	V
Drain Current Pulsed ${ }^{(2)}$	IDM	20	ADC
Continuous Drain Current (D2-PAK, I2-PAK)			
@ Tc = $25^{\circ} \mathrm{C}$	ID	3.9	ADC
@ Tc = $100^{\circ} \mathrm{C}$	ID	2.5	ADC
Continuous Drain Current (TO-220)			
@ Tc = $25^{\circ} \mathrm{C}$	ID	5	ADC
@ Tc = $100^{\circ} \mathrm{C}$	ID	3.2	ADC
Supply Voltage	VCC	20	V
Analog Input Voltage Range	VFB	-0.3 to Vcc	V
Total Power Dissipation (D2-PAK,I2-PAK)	PD	75	W
Total Power Dissipation (TO-220)	PD	120	W
Operating Junction Temperature	TJ	Internally limited	${ }^{\circ} \mathrm{C}$
Operating Ambient Temperature	TA	-25 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	TSTG	-55 to +150	${ }^{\circ} \mathrm{C}$
ESD Capability, HBM Model (All pins except Vfb)	-	$\begin{gathered} 2.0 \\ (\mathrm{GND}-\mathrm{Vfb}=1.5 \mathrm{kV}) \\ (\mathrm{Vcc}-\mathrm{Vfb}=1.0 \mathrm{kV}) \end{gathered}$	kV
ESD Capability, Machine Model (All pins except Vfb)	-	$\begin{gathered} 300 \\ (\text { GND-Vfb }=250 \mathrm{~V}) \\ (\mathrm{Vcc}-\mathrm{Vfb}=100 \mathrm{~V}) \end{gathered}$	V

Notes:

1. $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
2. Repetitive rating: Pulse width limited by maximum junction temperature.

Thermal Impedance

Parameter	Symbol	Value	Unit
Junction-to-Ambient Thermal	$\theta \mathrm{JA}^{(1)}$	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction-to-Case Thermal (D2-PAK, I2-PAK)	$\theta \mathrm{JC}^{(2)}$	1.7	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction-to-Case Thermal (TO-220)	$\theta \mathrm{JC}^{(2)}$	1.0	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Note:

1. Free standing with no heat-sink under natural convection
2. Infinite cooling condition - Refer to the SEMI G30-88.

Electrical Characteristics

($\mathrm{Ta}=25^{\circ} \mathrm{C}$ unless otherwise specified.)

Parameter	Symbol	Condition	Min.	Typ.	Max.	Unit
SenseFET SECTION						
Drain Source Breakdown Voltage	BVDSS	VGS $=0 \mathrm{~V}, \mathrm{ID}=250 \mu \mathrm{~A}$	650	-	-	V
Zero-Gate-Voltage Current	IDSS	$\begin{aligned} & \text { VDS }=\text { Max, Rating } \\ & \text { VGS }=0 \mathrm{~V} \end{aligned}$	-	-	500	$\mu \mathrm{A}$
Static Drain Source on Resistance ${ }^{(1)}$	RDS(ON)	$V G S=10 \mathrm{~V}, \mathrm{ID}=2.3 \mathrm{~A}$	-	1.76	2.2	Ω
Output Capacitance	Coss	$\begin{aligned} & \mathrm{VGS}=0 \mathrm{~V}, \mathrm{VDS}=25 \mathrm{~V}, \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$	-	78	-	pF
Turn on Delay Time	TD(ON)	$\mathrm{V} D \mathrm{DD}=325 \mathrm{~V}, \mathrm{ID}=5 \mathrm{~A}$	-	22	-	
Rise Time	TR	time is essentially	-	52	-	
Turn off Delay Time	TD(OFF)	independent of operating temperature)	-	95	-	ns
Fall Time	TF		-	50	-	
CONTROL SECTION						
Initial Frequency	Fosc	$\mathrm{VCC}=14 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=5 \mathrm{~V}$	60	66	72	kHz
Modulated Frequency Range	$\Delta \mathrm{Fmod}$	-	-	± 3	-	kHz
Frequency Modulation Cycle	Tmod	-	-	4	-	ms
Voltage Stability	Fstable	$10 \mathrm{~V} \leq \mathrm{VCC} \leq 17 \mathrm{~V}$	0	1	3	\%
Temperature Stability ${ }^{(2)}$	\triangle FOSC	$-25^{\circ} \mathrm{C} \leq \mathrm{Ta} \leq+85^{\circ} \mathrm{C}$	-	± 5	± 10	\%
Maximum Duty Cycle	Dmax	-	75	80	85	\%
Minimum Duty Cycle	Dmin	-	-	-	0	\%
Start Threshold Voltage	Vstart	VFB $=$ GND	11	12	13	V
Stop Threshold Voltage	Vstop	VFB = GND	7	8	9	V
Feedback Source Current	IFB	VFB $=$ GND	0.7	0.9	1.1	mA
Soft-start Time	Tss	-	10	15	20	ms
BURST MODE SECTION						
Burst Mode Voltages ${ }^{(2)}$	VBH	$V C C=14 \mathrm{~V}$	0.4	0.5	0.6	V
	VBL	$\mathrm{VCC}=14 \mathrm{~V}$	0.24	0.3	0.36	V

Notes:

1. Pulse Test: Pulse width $\leq 300 \mu \mathrm{~S}$, duty $\leq 2 \%$
2. These parameters, although guaranteed at the design, are not tested in mass production.

PROTECTION SECTION						
Peak Current Limit ${ }^{(2)}$	ILIM	$\mathrm{V}_{\mathrm{CC}}=14 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=5 \mathrm{~V}$	2.2	2.5	2.8	A
Over Voltage Protection	Vovp	-	18	19	20	V
Thermal Shutdown Temperature ${ }^{(1)}$	TsD		130	145	160	${ }^{\circ} \mathrm{C}$
ShutdownDelay Current	Idelay	$V_{F B}=4 \mathrm{~V}$	3.5	5.3	7	$\mu \mathrm{A}$
Shutdown Feedback Voltage	VSD	$\mathrm{V}_{\mathrm{FB}} \geq 5.5 \mathrm{~V}$	5.5	6	6.5	V
TOTAL DEVICE SECTION						
Startup Current	Istart		-	20	40	$\mu \mathrm{A}$
Operating Supply Current ${ }^{(3)}$	$\operatorname{lop}(\mathrm{MIN})$	$\mathrm{VCC}=10 \mathrm{~V}, \mathrm{VFB}=0 \mathrm{~V}$	-	2.5	5	mA
	IOP(MAX)	$\mathrm{VCC}=20 \mathrm{~V}, \mathrm{VFB}=0 \mathrm{~V}$				

Notes:

1. These parameters, although guaranteed at the design, are not tested in mass production.
2. These parameters indicate the inductor current.
3. This parameter is the current flowing into the control IC.

Comparison Between FSDM0565RB and FSCM0565R

Function	FSDM0565RB	FSCM0565R
Frequency Modulation	N / A	Available • Modulated frequency range (DFmod) $= \pm 3 \mathrm{kHz}$ - Frequency modulation cycle (Tmod) $=4 \mathrm{~ms}$
		- Programmable using external resistor (2.5A max)
Pulse-by-pulse Current Limit	• Internally fixed (2.25A)	- N/A (Requires a startup resistor) - Startup current: 40uA (max)
Internal Startup Circuit	• Available	

Typical Performance Characteristics

(These Characteristic Graphs are Normalized at $\mathrm{Ta}=25^{\circ} \mathrm{C}$.)

Figure 4. Startup Current vs. Temp

Figure 5 Stop Threshold Voltage vs. Temp

Figure 6. Maximum Duty Cycle vs. Temp

Figure 7. Start Threshold Voltage vs. Temp

Figure 8. Initial Freqency vs. Temp

Figure 9. Feedback Source Current vs. Temp

Typical Performance Characteristics (Continued)
(These Characteristic Graphs are Normalized at $\mathrm{Ta}=25^{\circ} \mathrm{C}$.)

Figure 10. Shutdown Feedback Voltage vs. Temp

Figure 11. Burst Mode Enable Voltage vs. Temp

Figure 12. Macimum Drain Current vs. Temp

Figure 13. Shutdown Delay Current vs. Temp

Figure 14. Burst Mode Disable Voltage vs. Temp

Figure 15. Operating Supply Current vs. Temp

Functional Description

1. Startup: Figure 16 shows the typical startup circuit and transformer auxiliary winding for the FSCM0565R application. Before the FSCM0565R begins switching, it consumes only startup current (typically 25uA) and the current supplied from the DC link supply current consumed by the FPS (Icc), and charges the external capacitor (C_{a}) that is connected to the Vcc pin. When Vcc reaches start voltage of 12 V (VSTART), the FSCM0565R begins switching, and the current consumed by the FSCM0565R increases to 3 mA . Then, the FSCM0565R continues its normal switching operation and the power required for this device is supplied from the transformer auxiliary winding, unless Vcc drops below the stop voltage of 8 V ($\mathrm{V}_{\text {STOP }}$). To guarantee the stable operation of the control IC, Vcc has under voltage lockout (UVLO) with 4V hysteresis. Figure 17 shows the relation between the current consumed by the FPS (ICC) and the supply voltage (V_{CC})

Figure 16. Startup Circuit

Figure 17. Relation Between Operating Supply Current and Vcc Voltage
The minimum current supplied through the startup resistor is given by

$$
I_{\text {sup }}{ }^{\min }=\left(\sqrt{2} \cdot V_{\text {line }}{ }^{m i n}-V_{\text {start }}\right) \cdot \frac{1}{R_{\text {str }}}
$$

where $V_{\text {line }}{ }^{\min }$ is the minimum input voltage, $V_{\text {start }}$ is the start voltage $(12 \mathrm{~V})$ and $R_{s t r}$ is the startup resistor. The startup resistor should be chosen so that $I_{s u p}{ }^{\text {min }}$ is larger than the maximum startup current (40 uA). If not, V_{CC} can not be charged to the start voltage and FPS will fail to start up.
2. Feedback Control: The FSCM0565R employs current mode control, as shown in Figure 18. An opto-coupler (such as the H11A817A) and a shunt regulator (such as the KA431) are typically used to implement the feedback network. Comparing the feedback voltage with the voltage across the Rsense resistor makes it possible to control the switching duty cycle. When the reference pin voltage of the KA431 exceeds the internal reference voltage of 2.5 V , the H11A817A LED current increases, thus pulling down the feedback voltage and reducing the duty cycle. This event typically happens when the input voltage is increased or the output load is decreased.
2.1 Pulse-by-pulse Current Limit: Because current mode control is employed, the peak current through the SenseFET is determined by the inverting input of the PWM comparator (Vfb*) as shown in Figure 18. When the current through the opto transistor is zero and the current limit pin (\#5) is left floating, the feedback current source (IFB) of 0.9 mA flows only through the internal resistor ($\mathrm{R}+2.5 \mathrm{R}=2.8 \mathrm{k}$). In this case, the cathode voltage of diode D2 and the peak drain current have maximum values of 2.5 V and 2.5 A , respectively. The pulse-by-pulse current limit can be adjusted using a resistor to GND on the current limit pin (\#5). The current limit level using an external resistor (RLIM) is given by

$$
I_{L I M}=\frac{R_{L I M} \cdot 2.5 A}{2.8 k \Omega+R_{L I M}}
$$

Figure 18. Pulse Width Modulation (PWM) Circuit
2.2 Leading Edge Blanking (LEB): At the instant the internal SenseFET is turned on, there usually exists a high
current spike through the SenseFET, caused by primary-side capacitance and secondary-side rectifier reverse recovery. Excessive voltage across the Rsense resistor can lead to incorrect feedback operation in the current mode PWM control. To counter this effect, the FSCM0565R employs a leading edge blanking (LEB) circuit. This circuit inhibits the PWM comparator for a short time (TLEB) after the SenseFET is turned on.
3. Protection Circuit: The FSCM0565R has several self protective functions such as over load protection (OLP), over voltage protection (OVP) and thermal shutdown (TSD). Because these protection circuits are fully integrated into the IC without external components, the reliability can be improved without increasing cost. Once the fault condition occurs, switching is terminated and the SenseFET remains off. This causes Vcc to fall. When Vcc reaches the UVLO stop voltage of 8 V , the current consumed by the FSCM0565R decreases to the startup current (typically 25 uA) and the current supplied from the DC link charges the external capacitor $\left(\mathrm{C}_{\mathrm{a}}\right)$ that is connected to the Vcc pin. When Vcc reaches the start voltage of 12 V , the FSCM0565R resumes its normal operation. In this manner, the auto-restart can alternately enable and disable the switching of the power SenseFET until the fault condition is eliminated (see Figure 19).

Figure 19. Auto Restart Operation
3.1 Over Load Protection (OLP): Overload is defined as the load current exceeding a pre-set level due to an unexpected event. In this situation, the protection circuit should be activated to protect the SMPS. However, even when the SMPS is in the normal operation, the over load protection circuit can be activated during the load transition. To avoid this undesired operation, the over load protection circuit is designed to be activated after a specified time to
determine whether it is a transient situation or an overload situation. Because of the pulse-by-pulse current limit capability, the maximum peak current through the SenseFET is limited, and therefore the maximum input power is restricted with a given input voltage. If the output consumes beyond this maximum power, the output voltage (Vo) decreases below the set voltage. This reduces the current through the opto-coupler LED, which also reduces the optocoupler transistor current, thus increasing the feedback voltage (Vfb). If Vfb exceeds 2.5 V , D1 is blocked and the 5.3 uA current source ($\mathrm{I}_{\text {delay }}$) starts to charge C_{B} slowly up to Vcc. In this condition, Vfb continues increasing until it reaches 6 V , when the switching operation is terminated as shown in Figure 20. The delay time for shutdown is the time required to charge CB from 2.5 V to 6.0 V with 5.3 uA (Idelay). In general, a $10 \sim 50 \mathrm{~ms}$ delay time is typical for most applications.

Figure 20. Over Load Protection
3.2 Over Voltage Protection (OVP): If the secondary side feedback circuit were to malfunction or a solder defect caused an open in the feedback path, the current through the opto-coupler transistor becomes almost zero. Then, Vfb climbs up in a similar manner to the over load situation, forcing the preset maximum current to be supplied to the SMPS until the over load protection is activated. Because more energy than required is provided to the output, the output voltage may exceed the rated voltage before the over load protection is activated, resulting in the breakdown of the devices in the secondary side. To prevent this situation, an over voltage protection (OVP) circuit is employed. In general, Vcc is proportional to the output voltage and the FSCM0565R uses Vcc instead of directly monitoring the output voltage. If VCC exceeds 19 V , an OVP circuit is activated resulting in the termination of the switching operation. To avoid undesired activation of OVP during normal operation, Vcc should be designed to be below 19V.
3.3 Thermal Shutdown (TSD): The SenseFET and the
control IC are built in one package. This makes it easy for the control IC to detect the heat generation from the SenseFET. When the temperature exceeds approximately $145^{\circ} \mathrm{C}$, the thermal protection is triggered resulting in shutdown of the FPS.
4. Frequency Modulation: EMI reduction can be accomplished by modulating the switching frequency of a switched power supply. Frequency modulation can reduce EMI by spreading the energy over a wider frequency range than the band width measured by the EMI test equipment. The amount of EMI reduction is directly related to the depth of the reference frequency. As can be seen in Figure 21, the frequency changes from 63 KHz to 69 KHz in 4 ms .

Figure 21. Frequency Modulation
5. Soft Start: The FSCM0565R has an internal soft start circuit that increases PWM comparator inverting input voltage together with the SenseFET current slowly after it starts up. The typical soft start time is 15 ms . The pulse width to the power switching device is progressively increased to establish the correct working conditions for transformers, rectifier diodes and capacitors. The voltage on the output capacitors is progressively increased with the intention of smoothly establishing the required output voltage. Preventing transformer saturation and reducing stress on the secondary diode during start up is also helpful.
6. Burst Operation: To minimize power dissipation in standby mode, the FSCM0565R enters into burst mode operation at light load condition. As the load decreases, the feedback voltage decreases. As shown in Figure 22, the device automatically enters into burst mode when the feedback voltage drops below VBL $(300 \mathrm{mV})$. At this point switching stops and the output voltages start to drop at a rate dependent on standby current load. This causes the feedback
voltage to rise. Once it passes VBH (500 mV), switching resumes. The feedback voltage then falls, and the process repeats. Burst mode operation alternately enables and disables switching of the power SenseFET, thereby reducing switching loss in standby mode.

Figure 22. Waveforms of Burst Operation

Typical application circuit

Application	Output Power	Input Voltage	Output Voltage (Max Current)
LCD Monitor	40 W	Universal Input	$5 \mathrm{~V}(2.0 \mathrm{~A})$
		$(85-265 \mathrm{Vac})$	$12 \mathrm{~V}(2.5 \mathrm{~A})$

Features

- High efficiency (>81\% at 85 Vac input)
- Low standby mode power consumption (<1W at 240 Vac input and 0.4 W load)
- Low component count
- Enhanced system reliability through various protection functions
- Low EMI through frequency modulation
- Internal soft-start (15ms)

Key Design Notes

- Resistors R102 and R105 are employed to prevent start-up at low input voltage
- The delay time for over load protection is designed to be about 50 ms with C 106 of 47 nF . If a faster triggering of OLP is required, C 106 can be reduced to 22 nF .

1. Schematic

Figure 23. Demo Circuit
2. Transformer

Figure 24. Transformer Schematic Diagram

3.Winding Specification

No	Pin (s $\rightarrow \mathbf{f})$	Wire	Turns	Winding Method
Na	$4 \rightarrow 5$	$0.2^{\phi} \times 1$	8	Center Winding
Insulation: Polyester Tape $\mathrm{t}=0.050 \mathrm{~mm}, 2$ Layers				
$\mathrm{Np} / 2$	$2 \rightarrow 1$	$0.4^{\phi} \times 1$	18	Solenoid Winding
Insulation: Polyester Tape $\mathrm{t}=0.050 \mathrm{~mm}, 2$ Layers				
N 12 V	$10 \rightarrow 8$	$0.3^{\phi} \times 3$	7	Center Winding
Insulation: Polyester Tape $\mathrm{t}=0.050 \mathrm{~mm}, 2 \mathrm{Layers}$				
N5V	$7 \rightarrow 6$	$0.3^{\phi} \times 3$	3	Center Winding
Insulation: Polyester Tape $\mathrm{t}=0.050 \mathrm{~mm}, 2$ Layers				
Np/2	$3 \rightarrow 2$	$0.4^{\phi} \times 1$	18	Solenoid Winding
Outer Insulation: Polyester Tape $\mathrm{t}=0.050 \mathrm{~mm}, 2 \mathrm{Layers}$				

4.Electrical Characteristics

	Pin	Specification	Remarks
Inductance	$1-3$	$520 \mathrm{uH} \pm 10 \%$	$100 \mathrm{kHz}, 1 \mathrm{~V}$
Leakage Inductance	$1-3$	10 uH Max	$2^{\text {nd }}$ all Short

5. Core \& Bobbin

Core: EER 3016
Bobbin: EER3016
Ae(mm2): 96
6. Demo Circuit Part List

Part	Value	Note	Part	Value	Note
Fuse			C301	4.7nF	Polyester Film Cap.
F101	2A/250V				
NTC			Inductor		
RT101	5D-9		L201	5uH	Wire 1.2 mm
Resistor			L202	5 uH	Wire 1.2mm
R101	560K	1W			
R102	500K	1/4W			
R103	56K	2W			
R104	5	1/4W	Diode		
R105	500K	1/4W	D101	UF4007	
R106	5K	1/4W	D102	TVR10G	
R201	1K	1/4W	D201	MBRF1045	
R202	10K	1/4W	D202	MBRF10100	
R203	1.2K	1/4W			
R204	5.6K	1/4W			
R205	5.6K	1/4W	Bridge Diode		
			BD101	2KBP06M 3N257	Bridge Diode
Capacitor					
C101	220nF/275VAC	Box Capacitor	Line Filter		
C102	220nF/275VAC	Box Capacitor	LF101	23mH	Wire 0.4 mm
C103	100uF/400V	Electrolytic Capacitor	IC		
C104	10nF/1kV	Ceramic Capacitor	IC101	FSCM0565R	FPS ${ }^{\text {TM }}$
C105	22uF/50V	Electrolytic Capacitor	IC201	KA431(TL431)	Voltage Reference
C106	47nF/50V	Ceramic Capacitor	IC301	H11A817A	Opto-coupler
C201	1000uF/25V	Electrolytic Capacitor			
C202	1000uF/25V	Electrolytic Capacitor			
C203	1000uF/10V	Electrolytic Capacitor			
C204	1000uF/10V	Electrolytic Capacitor			
C205	47nF/50V	Ceramic Capacitor			

Package Dimensions

D2-PAK-6L

NOTES: UNLESS OTHERWISE SPECIFIED
A) THIS PACKAGE DOES NOT COMPLY TO ANY CURRENT PACKAGING STANDARD
B) ALL DIMENSIONS ARE IN MILLIMETERS.
C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.
D) DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994

Package Dimensions (Continued)

I2-PAK-6L (Forming)

NOTES: UNLESS OTHERWISE SPECIFIED
A) THIS PACKAGE DOES NOT COMPLY TO ANY CURRENT PACKAGING STANDARD.
B) ALL DIMENSIONS ARE IN MILLIMETERS.
C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.

TO-220-6L (Forming)

Ordering Information

Product Number	Package	Marking Code	BVdss	Rds(on) Max.
FSCM0565RJ	D2-PAK-6L	CM0565R	650 V	2.2Ω
FSCM0565RIWDTU	I2-PAK-6L			
FSCM0565RGWDTU	TO-220-6L			

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
